UCBI0BSP SDK

Union Community’s Software Development Kit for Biometric Application

Programmer’s Guide

Version 3.00 Rev 01

UNION COMMUNITY Co., Ltd.

COMBMUMITY

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Copyright © 2008, UNION COMMUNITY Co., Ltd.

All rights reserved.

Page 2 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

USER License Agreement for Software Developer's Kit
Designed by Union Community Co., Ltd

This agreement is a legal usage license agreement between Union Community Co., Ltd. and the user.
If you do not agree with the terms and condition of the agreement, please return the product
promptly. If you return the product, you will receive a refund.

1. Usage License

UNION COMMUNITY Co., Ltd. Grants licensee to use this SDK a personal, Limited, non-transferable,
non-exclusive right to install and use one copy of the SDK on a single computer exclusively.

The software is considered 'being used' if it is stored in a computer's main or other storage device.
The number of software copies will be determined by taking the greater number of the number of
computers 'used' by the software and the number of computers with the software stored.

Licensee may use the SDK solely for developing, designing, and testing UNION software applications
for use with UNION products ("Applications").

2. Right to Upgrade

If you have purchased the software by upgrading an older version, the usage license of the old
version is transferred to the new version. However, you may only use the old version under the
condition that the old and new versions are not running simultaneously. Therefore, you are prohibited
from transferring, renting or selling the old version. You maintain the usage license for the program
and ancillary files that are in the old version but not in the new version.

3. Assignment of License

If you wish to transfer the usage license of this software to a third party, you must first obtain a
written statement indicating that the recipient agrees with this agreement. You must then transfer
the original disk and all other program components, and all copies of the program must be
destroyed. After the transfer is complete, you must notify UNION COMMUNITY Co., Ltd. to update
the customer registration.

Licensee shall not rent, lease, sell or lend the software application developed using the SDK to a third
party without UNION's prior written consent.

Licensee shall not copy and redistribute the SDK without UNION's prior written consent.

No other uses and/or distribution of the SDK or Sample Code are permitted without UNION's prior
written consent. UNION reserves all rights not expressly granted to Licensee.

4. Copyright

All copyrights and intellectual properties of the software and its components belong to UNION
COMMUNITY Co., Ltd. and these rights are protected under Korean and international copyright laws.
Therefore, you may not make copies of the software other than for your backup purposes. In addition,

Page 3 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

you may not modify the software other than for reverse-engineering purposes to secure compatibility.
Finally, you may not modify, transform or copy any part of the documentation without written
permission from UNION COMMUNITY. (If you're using a network product, you may copy the
documentation in the amount of the number of users)

5. Installation

An individual user can install this software in his/her PCs at home and office, as well as in a mobile
PC. However, the software must not be running from two computers simultaneously. A single product
can be installed in two or more computers in one location, but one of those computers must have a
usage rate of at least 70%. If another computer has a usage rate of 31% or higher, another copy of
the software must be purchased.

6. Limitation of Warranty

UNION COMMUNITY Co., Ltd. guarantees that the CD-ROM and all components are free of physical
damage for a year after purchase.

UNION DISCLAIMS ALL WARRANTIES NOT EXPRESSLY PROVIDED IN THIS AGREEMENT INCLUDING,
WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE. If you find any manufacture defect within the warranty period, we will replace
the product. You must be able to prove that the product has been purchased within a year to receive
a replacement, but we will not replace a product damaged due to your mishandling or negligence.
UNION COMMUNITY Co., Ltd. does not guarantee that the software and its features will satisfy your
specific needs, and is not liable for any consequential damages arising out of the use of this product.

7. Liabilities
UNION COMMUNITY Co., Ltd. is not liable for any verbal, written or other agreements made by third
parties, including product suppliers and dealers.

8. Termination

This agreement is valid until the date of termination. However, the agreement shall terminate
automatically if you damage the program or its components, or fail to comply with the terms
described in this agreement.

9. Customer Service

UNION COMMUNITY Co., Ltd. makes every effort to provide registered customers with technical
assistance and solutions to problems regarding software applications under certain system
environments. When a customer submits a suggestion about any inconvenience or anomaly
experienced during product usage, UNION COMMUNITY Co., Ltd. will take corrective action and
notify the customer of the result.

10. General Terms

Page 4 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

You acknowledge that you have read, understood and agree with the terms of this agreement. You
also recognize the fact that this agreement has precedence over user agreements of older versions,
past order agreements, advertisement notifications and/or other written agreements.

11. Contact
If you have any questions about this agreement, please contact UNION COMMUNITY Co., Ltd. via

telephone, fax or e-mail.

Page 5 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Table of Contents

L. OVEOIVICW ..aeeeeeeeeeereeeeeeersseesosssssssassssssssesssss ssssssssssssssssssssssssnsss 2

1.1, Special FEAtUres Of SDK ...ttt sssss sttt sss s st ssssens 22
1.2, Provided MOGUIE ...ttt st sss st st et essnns 23
1.3, DevelopmMeENt IMOE ...t et 24
14, FINGerprint Data StrUCTUIE ...ttt s ssnses 25
0t 0T 5= 25
T 1 T [25
1.4.3. Data BIOCK ... e e 27
1.5, Terminology DESCHPLION ... sttt sssss st sss s st sens 28

2. INSTAlAtioNeeeeieeeeeeeieeeeeeeceeeereeseeeeseeeessescesssssssssssssssssssssssasss 2D

2.1, SySTEM REGUITEMENTS ...ttt et bbb et 29
2.2, INSTAIIING cooe e ettt bbbt 30
2.3. Description of Files and Folders to Be Installed ..o 37
2.3.1. Windows System32 folder ..o s 37
2.3.2. GAC (Global Assembly Cache) folder........ccoviiiiiiii e 37
2.3.3. (Installation folder)\INC ... e 37
2.3.4. (Installation folder)\LibD. ... e 38
2.3.5. (Installation folder)\Bin ... 38
2.3.6. (Installation folder)\NdOtNETcoiiiii e e e e eeaaas 38
2.3.7. (Installation folder)\dotNet\Setupcoiii i 39
2.3.8. (Installation folder)\Samplesccuiiiiiiiii e e 39
2.3.9. (Installation folder)\SKINScoooiii e 39

3. Programming by using DLLcccoveeereevreccercceecercerecneeee. 40

3.1 FUNCHION CAII SEIUCTUI oottt et eeee e e seaeseesese s seeaseaesseessseesessane sesesensessanenes 40
3.2, INitialization aNd TEIMINATION ...ttt e eee e sese s eseeseseseseas sesaseasas 41
32,0, INIAIIZING e e 41
R 2 =Y g0 11 0 = 1 o [T 41

Page 6 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.30 BASIC SEUEING ettt et 42
3.3.1. Obtaining SDK VeIrSION ... e eaaaas 42
3.3.2. Obtaining basic setting values & Setting up new values 42

34, USING DBVICE. ...ttt sttt bt 46
3.4.1. Obtaining deViCe liSt......coviiii i et e e aaaas 46
3.4.2. OPENING AOVICE. ..ttt ettt et aaaaas 47
3.4.3. ClOSING EVICE ..ttt ettt ettt ettt e e e e a e aaaaas 47
3.4.4. Obtaining device information i 48
3.4.5. Setting fake fingerprint detection level for devicecccoevviiiiiiiiian, 48

3.5, UNderstanding FIR Data.....cc..coocoiinrineiineiies et st sssssssssssssssss s ssssssss sessssssssnes 50
3.5.1. The type Of FIR oottt ettt e e eeeaaaas 50
3.5.2. The USE Of FIR e e e ae s 50
3.5.3. Releasing FIR MeMOIY ...ttt et ettt eeae e e aaanns 52
3.5.4. Conversion Of FIR ... s 52

3.6. RegiStering FINGEIPIINT ...ttt ettt et bsees 54
3.6.1. New fingerprint registration & Existing fingerprint modification 54
3.6.2. Payload designationocooiiiiiiiiii i 54
3.6.3. EXampPle Of USe. ... s 54

3.7, ACQUINING FINGEIPIINT ...t et ss et esse sttt st 56
3.7.1. Fingerprint aCqUISITION ... aas 56
3.7.2. EXAMPIE Of USB ..ttt ettt 56

3.8. Authenticating FINGEIPIINT ..ottt st ensssssaees 57
3.8.1. Authenticating live fingerprint with registered fingerprint...................... 57
3.8.2. Authenticating already acquired fingerprint with registered fingerprint.... 57
3.8.3. Obtaining Payload data.........c.cooeiiiiiiiii i 59

3.9. Using FastSearch (1:N Authentication)c.cooeinrierinniinnninnrieeeeeseseees s 60
3.9.1. Initialization and Termination..........ccoiiiiiiiiii e 60
3.9.2. Obtaining basic setting values & Setting new values ...t 60
3.9.3. Creating DB ...ttt 60
3.9.4. Memory DB management.ot 61
3.9.5. Authenticating LiNcooiiiiii ettt 62

3.10. CoNVErting FIR Data......cocoeiueiereeeriineiineineiiseiee et ssse st ssss st ssssssn s ssssssesens 64
3.10.1. Extracting template data from FIRdata.........c.oooiiiiiiiiiiiiii e, 64
3.10.2. Creating FIR Handle using template data............cocoiiiiiiiiiiiiiiiiiiiian, 64
3.10.3. Conversion between template data...........cooeiiiiiiiiiiiiiiiiii s 66

Page 7 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.10.4. Extracting raw image from Audit FIR dataccccovviiiiiiii i, 66
3.10.5. Creating Audit FIR Handle using raw imagecccoviiiiiiiiaiiiiiiaaaaaans 67
3.11L SEETEING Ul st bbb 68
3.11.1. Loading sKin file ... s 68
3.11.2. Changing Ul ProOPertY ...t ettt ettt e et e et e e e e e eaeaannas 68
1C I I I TR U £~ 5 T - 11| o Y- T 70
3.11.4. EXAMPIe Of USB. ittt ettt 72
3.12. USING the SMart Card......c ettt st sssss st st ssss st ess st sssssssnes 73
3.12.1. Outline of the smart cardo e 73
3.12.2. Switching on/off RF power of smart card ..o, 76
3.12.3. Reading serial number of smartcardcccoeviiiiiiiiiiiiii s 77
3.12.4. Reading & Writing block value...........oo i 77

4. Programming by using COM.........cievererercceeccerccceecscceecens 79

4.1, OULHNE Of COM USE ..ot s ssissssssssss sttt st s ssss s e 79
4.1.1. Registration Of COMciiiiiiiiii i ettt eea e eeaaneeeaanas 79
4.2. Initialization and TerMINAtION ...ttt sttt st e 80
0 R 1 o 1 1 = 114 1 Vo 80
A4.2.2. TermMiNAUING ..o 80
4.2.3. Lower interface declarationooooiiiiiiiiiiii e 80
4.3, BASIC SEUHING .ottt ettt sttt s 83
4.3.1. Obtaining SDK VEISION....ciiii ittt eeaeeaaanas 83
4.3.2. Obtaining basic setting values & Setting new valuesccooocevvinae. 83
A4, USING DOVICE. ..ottt et s 85
4.4.1. Obtaining device liSt. ... e 85
A © T o 1= o 110 Vo o L=V o= 86
2 G B O (0111 g T B0 [o= P 87
4.4.4. Obtaining device iNformationcociiiiiiiiii i aeaas 87
4.4.5. Setting fake fingerprint detection level for device ..., 88
4.5, Understanding FIR Data......ccccooeiiriniieiireeii et sssesse st st ssse st ssssses st e 89
4.5.1. The type Of FIR ..o e 89
4.5.2. The USE OF FIR ... e e e aaaeenas 89
4.5.3. Releasing FIR MeMOIYt 89
4.6. RegiStering FINGEIPIINT ...ttt sttt ettt et st 90

Page 8 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.6.1. New fingerprint registration & Existing fingerprint modification............... 90
4.6.2. Payload designation 90
4.6.3. EXAmMPIe Of USE. ..ottt aaan 90
47, ACQUINNG FINGEIPIINT ..ot ettt es s ss st et esnesnnes 92
4.7.1. Fingerprint aCqUISITION ..ottt 92
A4.7.2. EXampPle Of USe. .. 92
4.8. AUuthenticating FINGEIPIINT ...ttt es st e 94
4.8.1. Authentication live fingerprint wit registered fingerprint........................ 94
4.8.2. Authenticating already acquired fingerprint with registered fingerprint.... 94
4.8.3. Obtaining Payload data........ ..o s 96
4.9. Using FastSearch (L:N AUThentiCation) ... ssseesssenens 97
4.9.1. |Initialization and Termination....... ..o eaaas 97
4.9.2. Obtaining basic setting values & Setting up new valuescc.voua.. 97
4.9.3. Creating DB e 98
4.9.4. Memory DB mManagemMent.oouiiiiiiiiieii it e e e eaeaeaes 99
4.9.5. Authenticating LiN ... et 99
4.10. CoNVErtiNg FIR Data.....cccmieueiierimeiieeiineeiseess s s essse st ssse e s s st sssses eesessssssesns 102
4.10.1. Extracting template data from FIR data. ..o, 102
4.10.2. Creating FIR using template data.........ccovoiiiiiiiiiiiiiii e 102
4.10.3. Extracting raw image from Audit FIR data ..., 103
A 1TL. SEHHING ULttt ettt et 105
4.11.1. Loading sKin file ... e 105
4.11.2. Changing Ul Property ... et ettt et e e e e eeaanneeeann 105
4.11.3. Using Callback Event Handler 106
4.12. USING SMAT CAId ...ttt st 108
4.12.1. |Initialization and TerminatioN.t e e 108
4.12.2. Switching on/off RF power of smart cardoooiiiiiiiiiiiiiiiiiii i, 108
4.12.3. Reading serial number of smart cardo 109
4.12.4. Reading & Writing block value.......... ..o 110

API Reference fOr DLLceiieeeeeeceeeeeeeeeeeecssecessssocsssssssssses 112

5.1 TYPE AEFINIIONS oot ettt sttt s sssenes 112
L Tt RO = ¥ 1= o Y o1 P 112

] UCBIioAPL_SINT8 / UCBioAPI_SINT16 / UCBIOAPI_SINT32......ccooeirrrerereereeiseeeeeeereseonn. 112

u UCBioAPI_UINT8 / UCBioAPI_UINT16 / UCBioAPI_UINT32 / UCBioAPI_UINT64.....112

Page 9 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

lIlIlIlIlIlIlIlIlIlllllllllllllllli\Jllllll

UCBIOAPLSINT / UCBIOAPI_UINToiirirrrirrieniirneississiiessiseiessestsssssssssssssssssssssssssssssssssnssnnns 112
UCBIOAPLVOID_PTRooitiieieeiinieseesisssseesissssss esessssssssssesessans ssssssssnnes 112
UCBIOAPLBOOL ...ttt sesssssssssssssssssssssssssssssss st ssss st ssssssssssssss essssssnsssnses 112
UCBIOAPL_CHAR / UCBIOAPI_CHAR_PTR .ottt ettt essssessaensens 112
UCBIOAPLLINULL ..ottt st ss s s bbbt ss st st sssssessbssssssssnsssnses 112
UCBIOAPILHWIND ...ttt st sssss s e s ss st st ss s ss s bassssnsnes 112
171 o 1T = L 07/ 0 1= 113
UCBIOAPL_FIR_VERSIONooiietirririineiiisiiesississsseessssssssssesssssssssssssssssssssssssssssssassssssssssssans srsessnnes 113
UCBIOAPLLVERSIONovtiiritrieniinsisseesisssssssis sesssssss s sssss st sssssssssssss st sssssssssssssnsss ssssnsssnses 113
UCBIOAPL FIR_DATA_TYPE ...ttt et sess s ssssssssssss s s sassss s s ssssas sessnes 113
UCBIOAPL_FIR_PURPOSE ..ottt s sssssssssssssssss st sssssssssssssssssnssss sssssnses 113
UCBIOAPL FIR_QUALITY ...ovtirieertrrieiieetsisseestssssssseestesssssssesssss s ssssssssssssssss s s sasssssssssssss sessssnnes 114
UCBIOAPL_FIR_PRIVILEGEootieiieiniiesiesiesies e ssssssssssssssssssssssssssssssssssssss essssnses 114
UCBIOAPLFIR _DATE ...ttt s ssassssstsssss s sasssss s ss s s sss s sass s s ss s bssssessnnes 115
UCBIOAPLFIR_UUID _INFOoosieiierierieeissisesteeiss s stsssssssssssssssssssssssssssssssssssssnss sesnses 115
UCBIOAPL_OPTIONAL_DATA_TYPE ...ttt sttt sssssstss s sssssss s sssssssansens 115
UCBIOAPL_FIR_OPTIONAL_DATA ...ttt sssnnns 116
UCBIOAPLFIR_HEADER. ..ottt sessass s sse s s ssssss s s sassss s sassas s sssssnes 117
UCBIOAPLFIR_DATA ...ttt sss s s ssss bbbt sssss s ssss b s ssnsen 117
UCBIOAPLFIR_FORMAT ...ttt stsssssse seesssssssss st s sss st s sssssss s sasssss s sssssssrsssnnes 118
UCBIOAPLFIR ...ttt sttt st st bbbttt bbb benes 118
UCBIOAPL FIR_PAYLOAD.......oottireeerirtisieeseesisisse esssssss s sssssss s ssessss s ssssssssssssssssssssssssssssns srsssnnes 118
UCBioAPI_HANDLE / UCBIOAPI_HANDLE_PTRc.ccoieieiieirerierisnsinsisssenssenssessssesssssssssssnses 119
UCBIioAPI_FIR_HANDLE / UCBioAPI_FIR_HANDLE_PTR......cccccocsirrrrrrrnrerrirrrneensiesssesennens 119
UCBIOAPL_FIR_SECURITY_LEVEL ...t ssssssssssssssssssssssssssssn e 119
UCBIOAPL_TEMPLATE_FORMAT ..ottt st sss s sssssssssssssssssss s sanssssssssansens 120
UCBIOAPL_ LIVE_DETECT _LEVEL ..ottt ssssssssss s sssssssssssssssssssnss son 120
UCBIOAPLINIT_INFO_ Dottt seestssss s see s ssesssssssssssssssssssssssssssssanss esssssnnes 121
UCBIOAPLDEVICE_ID ...ttt sssssssssssss s sssssss s ssnsssn sesssnsssnses 122
UCBIOAPLDEVICE_NAME ...ttt se st sess s sss s sss s s sassses s s sassanssssnes 122
UCBIOAPL_DEVICE_INFO_D ..ottt stssssssssssssssssss s ssssssssssssssssss sesnses 123
UCBIOAPL_DEVICE_INFO_EX...ooiiiiieeeeiiiieieesissisiee et seesasssss s ssssass s ssssssssssassssssssssssssssnss sennes 123
UCBIOAPLRETURN ...ttt s ssssssss bbbttt ssssssssss ssssssnsssnses 124
UCBIOAPL_FIR_TEXTENGCODEooieieitiinieesirsisieese st seesasssss s ssssess s ssssssssssssssssssssssssasssssans aves 125
UCBIOAPLINPUT_FIR_FORMosiiriirriniinnsisniisis et ssssssssss s ssssssssssssssssssssssnnssnes 125
UCBIOAPLINPUT_FIR ...ttt ssssseestsssss s sssssss s sss st s ssssss s s sssssssssssas ssssssssssnnes 125
UCBioAPL_WINDOW_CALLBACK_PARAM_Qcooirrrerierirnrirneesiesissississesssesssssssssssssssssssnses 126
UCBIOAPL_ WINDOW_CALLBACK _PARAM_L ...ttt nseseiestssiesessisssssassessssssassennens 127
UCBioAPI_WINDOW_CALLBACK_0 / UCBioAPI_WINDOW_CALLBACK 1......ccccoomruunn.. 127
UCBIioAPI_CALLBACK_INFO_0 / UCBioAPI_CALLBACK_INFO_1....cccoerererrrrinrenrirrrnnenns 128
UCBIOAPLWINDOW_STYLE ..ottt st ssssssssssssssssss s sssssssssssssssssssssnnsones 129

Page 10 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

] UCBIOAPL_WINDOW_OPTION ..ot ssssesssssssessssssssssssssssssssssssssssssssssnssssssnnss 129

u UCBIOAPL_WINDOW_OPTION_Z......overiirieieerirniesensinsiesesessisssssssssssssssssssssssssssssssssssssssassssssssassens 131

] UCBIOAPLTEMPLATE_TYPE ...ttt ettt ssssssssss s sss s st sssssssssssn enses 132

u UCBIOAPLFINGER _ID ..ottt e seestssss s ses s sse s s ssssss s s ssssss s sassssssssssnnes 132

] UCBIOAPL_MATCH_OPTION_O....oovteiiriinieniieniieniiessiss e ssssssssssssssssesssssssssssssssssssssssnsssssenss 133
5.1.3. Export/Import functions related types.........ccoooiiiiiiiiiiii it 134
] UCBIOAPL TEMPLATE_BLOGCK ...t sssssssssssssssssss s sssssssssssssssssssssnsss sos 134

u UCBIOAPL_ FINGER _BLOCKoovtiirieeriririnieniisisieese et sessesssssssssesssssssssssssssssassssssssssssassanssssnnes 134

] UCBIOAPL_EXPORT_DATA ...ttt s sssss st ssssssssssssssssssssssssssssssssnsssssssnsssssnses 135

] UCBIOAPLIMAGE_DATA ...ttt s estesss s ses s ss s sss s sassss s ssess sesssnes 135

] UCBIOAPLAUDIT_DATA ...t sesss bbbt ssssssssssssss st ssssssssssssssnsssssss ssssnses 136

u UCBIOAPL_EXPORT_AUDIT_DATA ...ttt st ssssssssssssssssssessssssssss s sassssssssssnsens 137
5.1.4. FastSearch functions related typescoviiiiiiiiiii e 138
u UCBIOAPL_FASTSEARCH_INIT_INFO_O ..ottt sssssssessisssssassasssssssssesseensans 138

] UCBiIoAPIL_FASTSEARCH_INIT_INFO_Oooiiriieiierierieeis s sssssesssssssssssssssssssses 139

u UCBIOAPI_FASTSEARCH_SAMPLE INFO.......cooeiiririieriinineecienisieseesisssssissiessssssssessssssssessaessans 139

] UCBioAPI_FASTSEARCH_CALLBACK_PARAM_O.....ovvrrrrrrrirnrresierirssissesssesssssssessssesssessssssnses 140

] UCBIOAPI_FASTSEARCH_CALLBACK Dottt eeiessssseseesssssssseesessssssssasssssssssessasnsans 140

] UCBioAPI_FASTSEARCH_CALLBACK_INFO_D......coverrrrrrrerireesiesiesissesssesssessssssssssssssssssnses 141
5.1.5. SmartCard functions related typesooiiiiiiiiii it 142
] UCBioAPIL_SC_USE_KEY_A / UCBIOAPL_SC_USE_KEY _B......cocovmrrrrrrrrrrrnriesiesiesisssesnsenees 142

u UCBIioAPI_SC_LED_TOGGLE / UCBioAPI_SC_LED_NOT_TOGGLE.........ccccccvrrrrrrrnrrrrrrrans 142

5.2, ErrOr DEFINITIONS ..ottt st st enes 143
L 2t O ¥ oo <=1 143
] UCBIOAPIERROR_NONE ...ttt st sssssss st sse s s st s sssnsssssnses 143
5.2.2. General error definitions ... s 144
] UCBIOAPIERROR_INVALID_HANDLE...........covirrirrirriinniinns e sssssssssssssssssssssssennss 144

] UCBIOAPIERROR _INVALID_POINTER. ..ottt ettt ssssass s sens 144

] UCBIOAPIERROR_INVALID _TYPE ..ot sssiessisssesssssssssssssssssssssssssssssnsssnssssssnnss 144

] UCBIOAPIERROR _FUNCTION_FALLcveeitrieererrtresesensiesss e ssssees s sssssssisssssssssssssssassssssssssnsens 144

] UCBioAPIERROR_STRUCTTYPE_NOT_MATCHEDcoccosirriereeirnrirneniirssiessssiessesesnsennes 144

] UCBIOAPIERROR_ALREADY_PROCESSEDooveiiiieeeerisiesestrsissessiessssiesiessssssssessisssssassessenns 145

] UCBioAPIERROR_EXTRACTION_OPEN_FAILovvorirretrrierrs et sesssssssssssssnees 145

] UCBIOAPIERROR _VERIFICATION_OPEN_FAILcooivreeertrerreeeserireeeeiesisseseesisssssessessssssassensens 145

] UCBIOAPIERROR_DATA_PROCESS _FAILL.....cvvriiriieriniieeinsessesssiessisssssssssssssssssssssssssssssssssssssnses 145

] UCBIOAPIERROR_MUST_BE_PROCESSED_DATA..........oirrrrrinririneeesisssssessissssssassessssssssensens 145

] UCBioAPIERROR_INTERNAL_CHECKSUM_FAILLoovrrmrirrieriereriresinsisnsesssesssessssessssssnsssnses 146

] UCBIoAPIERROR_ENCRYPTED_DATA_ERROR........coreeerrrrreeerisineensiesississessiessssessessssssassensens 146

] UCBioAPIERROR_UNKNOWN_FORMATcoooriertrerirerinsinsessiesssessssssssssssssssssssssssssssssssssnses 146

] UCBIOAPIERROR_UNKNOWN_VERSIONooeveririeerirnineiesisiesissessiesssssssesstssssssesssesssssssessenns 146

] UCBIOAPIERROR_VALIDITY _FALL ...t sessnssnn 147

Page 11 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

EE EEEEOENEENEEENEENEEENEVUOEEEEENEEN AEEEEEEOEEEEENN

UCBIOAPIERROR _INVALID_TEMPLATESIZE ...t 147
UCBIOAPIERROR_INVALID_TEMPLATE ...t enannnns 147
UCBIOAPIERROR_EXPIRED _VERSION ..ottt sssae e 147
UCBIoAPIERROR_INVALID_SAMPLESPERFINGER.........cooooieeeeeeeeeeee e 147
UCBioAPIERROR_UNKNOWN_INPUTFORMAT ...ttt sessaesaes e senans 148
UCBIOAPIERROR_INVALID_PARAMETER ...t 148
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED.......cooeveeeeereeeeeeeeerteeeeveeeesies s 148
Initialization related error definitionso 149
UCBIioAPIERROR_INIT_MAXFINGERSFORENROLL ..ottt 149
UCBIoAPIERROR_INIT_NECESSARYENROLLNUMooooeecteecveeeee e vennes 149
UCBIoAPIERROR_INIT_SAMPLESPERFINGER.........cooieieeee e 149
UCBIOAPIERROR_INIT_SECULEVELFORENROLL......ovceeceeeeeeeeeeeeeeeeeeeee e 149
UCBIoAPIERROR_INIT_SECULEVELFORVERIFY ..ottt saenes 149
UCBIoAPIERROR_INIT_SECULEVELFORIDENTIFYooouoieoieeeeeeeteeeeeveeeeeeeeee e 149
Device related error definitionsooviiiiiiiiiiii e 150
UCBIOAPIERROR_DEVICE_OPEN_FAIL......ouieieeeeeeeeeeeeee et vesees e en s 150
UCBIOAPIERROR _INVALID_DEVICE_ID......ooioieeeeeeeeeeeeteee e esveeies e aes s saesaes s sssaesaenas 150
UCBIOAPIERROR_WRONG_DEVICE_ID ...t ses s aenannnns 150
UCBIioAPIERROR_DEVICE_ALREADY_OPENED.........oooeieeeeeee et 150
UCBIOAPIERROR_DEVICE_NOT_OPENED ..ottt es s 150
UCBIOAPIERROR_DEVICE_BRIGHTINESS ... 151
UCBIOAPIERROR_DEVICE_CONTRAST ...ttt seste s ss s sesasnnns 151
UCBIOAPIERROR _DEVICE_GAIN ..ottt et 151
User interface related error definitions ..o, 152
UCBIOAPIERROR _USER_CANCEL ...ttt 152
UCBIOAPIERROR_USER _BACK ...t ettt ses s s ses s sesassannn e 152
UCBIOAPIERROR _CAPTURE_TIMEQOUT ...ttt sssaessessessae e 152
UCBIoAPIERROR_CAPTURE_FAKE_SUSPICIOUS. ...t vessee e 152
UCBIOAPIERROR_ENROLL_EVENT_PLACE ...ttt sessae e 152
UCBIOAPIERROR_ENROLL_EVENT_HOLD ...ttt ses s 152
UCBIOAPIERROR_ENROLL_EVENT_REMOVE ...t raenas 152
UCBIoAPIERROR_ENROLL_EVENT_PLACE_AGAIN.......oooeeeerecteeeereeeeeeeeeveevesaesesee s 152
UCBIOAPIERROR_ENROLL_EVENT_PROCESS ...ttt sesaessesss s 153
UCBIoAPIERROR_ENROLL_EVENT_MATCH_FAILED ...t 153
FastSearch related error definitionscccoviiiiiiiiii i e 154
UCBIOAPIERROR_FASTSEARCH _INIT_FAIL.....oiioeeeeeeeeeeeeeeeeeeeveeteete et 154
UCBIOAPIERROR_FASTSEARCH_SAVE_DBi ...ttt resaes s saenas 154
UCBIOAPIERROR_FASTSEARCH_LOAD _DBi.....ooeeeeeeeeeeeeeeceeeeeee e veeeseee s aenae s 154
UCBIioAPIERROR_FASTSEARCH_UNKNOWN_VER........cooioreeeeeeteeeeeeeeeee e 154
UCBIoAPIERROR_FASTSEARCH _IDENTIFY_FAIL......oooeeeeeeeeeeeeeeeeeeeeeeveeeeeeeee s 154
UCBIioAPIERROR_FASTSEARCH_DUPLICATED_ID ..ottt 155

Page 12 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPIERROR_FASTSEARCH_IDENTIFY_STOP ..o 155

B UCBIoAPIERROR_FASTSEARCH_NOUSER _EXIST ..o sesessssessssnens 155
5.2.7. Optional value related error definitionsoooiiiiiiiiiiiiiiii et 156
B UCBIOAPIERROR_OPTIONAL _UUID_FAILoouoveeveeeeeeeeeeeeeee e eeeeveeveeseeeeesves s sassaesssssanes 156

B UCBIOAPIERROR_OPTIONAL _PINTL_FAILoomoioieereeeceeceee et essses e saessanssaes 156

B UCBIOAPIERROR_OPTIONAL_PINZ2_FAILooioieoreeeeeeeeereeee et sesssesses s sassanns 156

B UCBIOAPIERROR_OPTIONAL_SITEID_FAIL....cooiooereeeeeeeeeeeeeeeeeeeseeeeieeveesee s esseessees e senssaes 156

B UCBIoOAPIERROR_OPTIONAL_EXPIRE_DATE_FAIL ..o 156
5.2.8. SmartCard related error definitionscccoiiiiiiiiii i it 157
B UCBIOAPIERROR_SC_FUNCTION_FAILED ..o e sassnnns 157

B UCBioAPIERROR_SC_NOT_SUPPORTED_DEVICE.........oooreeeeeeeeeeeeeeeeseeeeeevessvessieesiensanes 157

B UCBIoAPIERROR_SC_NOT_SUPPORTED_FIRMWAREccooieereereeeereeeeeeeesreseeeeees s 157

5.3, APL REEIENCES ...ttt s 158
LG T I = 7 1= o A = S 158
B UCBIOAPLINIT oottt ettt sttt e s s aen s 158

| UCBIOAPL TEIMINGLE ...ttt ettt st sass ssassasassens 159

[| UCBIOAPI_GEEVEISION. ...ttt sttt e eee et ss st sttt s ts e srasessasasens 160

| UCBIOAPI_ GEIINIEINTO ...ttt esnas s seassaeen 161

] UCBIOAPL SEIINITINTO ..ottt e e eee e seeseaseae s sesseas s eeaseas e sssasee s sseaseasraeen 162

| UCBIOAPIL_SEESKINRESOUITE ...t ettt ss s s 163
5.3.2. DevVice related APl ... e, 164
| UCBIOAPI_ENUMEIAEDEVICE ...ttt ass s ssn s 164

[| UCBIOAPL_OPENDEVICE ...t st sssssssssssss st ssssss s ssssssss ssnsssnsen 165

| UCBIOAPIL_CIOSEDEVICE ...ttt ass st seaseassaeen 166

] UCBIOAPL_ GEIDEVICEINTO .o sttt ee s e e sas s sseaseaseasssen seeaenaenn 167

| UCBIOAPIL_SEEDEVICEINTO ...ttt sss saseassaeen 168

[| UCBIOAPL AGJUSTDEVICE ..ot sttt sssse sttt eesssnens 169

| UCBIOAPL GetOPEN@ADEVICEID ...t ssssssss s st sssssssssssssssssssssssans 170

[| UCBIOAPL CRECKFINGE ..ot ettt ettt et 171
5.3.3. Memory related APl ... s 172
[| UCBIOAPI_GEtFIRFIOMHANAIE ...ttt e 172

| UCBIoAPI_GetExtendedFIRFrOMHANAIE..........oeeeeee e 173

[| UCBIOAPI_GetHeaderFromMHANAIE ...t 174

| UCBIoAPI_GetExtendedFIRFIOMHANAIE..........oeeeeee ettt 175

[| UCBIOAPI_GetTeXtFIRFIOMHANAIE ...t 176

| UCBIioAPI_GetExtendedTextFIRFrOMHANAIE...........ooeeeeeeeeeeeeeeeee e 177

[| UCBIOAPI_FrEEFIRHANAIE ... ettt ettt s s ts e srasaseas 178

B UCBIOAPIFIEEFIR ...ttt s seassassassaseaes 179

[| UCBIOAPI_FIEETEXEFIR ...t sttt s s s e st sesas e sas e sraeessaseseas 180

| UCBIOAPL FrEEPAYIOAd ... ettt sss st sss st sesss s s ssaens 181

LS TG 2 N 0 1 ¢ = o 182

Page 13 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

lIIIII:\lllIIIIIIIIIIII:OIIIIIIIIIII:U'IIIIIIII

UCBIOAPL CAPIUI ...ttt ssss bbbttt s s ssnen 182
UCBIOAPI_PIOCESS ...ttt ettt sttt sa s sas s s sesn s essasssassasns 184
UCBIOAPL_CreateTemMPIAte ..ottt sttt sssnses 185
UCBIOAPLVEITYMALCN ...ttt sttt sss st sesss s ssssnssaens 187
UCBIOAPIL_VEITYMAEEICNEXcoorieerieeeeieeeeie et eeeeeessssesssesess s ssse st ssssessss s ss s sesssnees 188
UCBIOAPI_ENTOI] oo et sessssssassnssanen 190
UCBIOAPIVETITY ..ot tseess st s sssse st ssss sttt s ssssesssseees 192
Data CONVEISION AP ... e eeeaaaeaaaas 194
UCBIOAPL FIRTOTEMPIALE ..ottt ss bbb e nssnnen 194
UCBIOAPLTEMPIGLETOFIR ...ttt sttt st sss sttt sssss st snsssens 196
UCBIOAPL TEMPIAtETOFIREX ..ottt ss bbbt sss st s sesnsen 198
UCBIOAPL ConVertTeMpPlateData. ...t sssss s sssssssssssssssssssssnssans 200
UCBIOAPLIMPOrtDAtaTOFIR ...ttt bbbt sssnss sesnses 202
UCBIOAPLIMPOrtDataTOFIREXc.cieriereeeiereiereiereie ettt sssesssesssssssssssssnes 204
UCBIOAPL AUAItFIRTOIMAGE .covvveereeereieeciie et eisse et e sssss st e ss s sssesssn sees 206
UCBIOAPLIMAGETOAUAITFIR ..ottt ettt st ssss sttt nssen s 207
UCBIOAPIL_FIEEDATA. ...ttt ettt et sttt sesas sessaeessasasens 208
UCBIOAPL_Fre@EXPOItDALA «..ooveoeereereecieeieeie e et es et ssss st st ss s s sssnees 209
UCBIOAPL_FreeEXPOrtAUdItData. ..ot sss e e 210
FastSearCh APl ... s 211
UCBIOAPLINiItFastSEarChENGINE ...ttt sesesesne s 211
UCBIiOAPL TerminateFastSearchENGINE.........coo.coevriinrieereenniesisssiesssisss s sissssssssssssssssssssanes 212
UCBIOAPI_ GetFastSEarCINITINTOve ettt see e e aseaseeseaeseesssaseesseen 213
UCBIOAPI_SetFastSearchINItINTO ...ttt s 214
UCBIOAPI_AdAFIRTOFASESEAICNDB ...ttt ees s 215
UCBIOAPL RemoveFpFromFastSEarchDB..........crinrinrinsssesessssssssssssssssssssseans 217
UCBioAPI_RemoveUserFromFastSearchDB............. et 218
UCBIioAPL IdentifyFIRFromFastSEArchDBccooinriennrineinsssessesssessssssssssssssnssnns 219
UCBIOAPI_ClearFastSEaArChDB ...ttt et eeeseesas s ses s s s esee e 221
UCBIOAPI_SaveFastSEarchDBTOFIIE. ...t 222
UCBIOAPI_LoadFastSearchDBTOFIIE ...ttt n s 223
UCBIioAPL GetFpCountFromFastSEarchDB...........coorierinnrinninssseissessssssssessssssssssnsenns 224
UCBIioAPL_GetFpInfoFromFastSearchDB..........cco.vveereeeeneeresssee s 225
UCBIOAPL CheckFpEXiStINFastSEArchDB ... sissssssssssssssssssssssssssnesans 226
SNAITCArd AP e e 227
UCBIOAPI_SC_RFPOWEION ...ttt sss s sasss s sssas s s sassn sesnns 227
UCBIOAPI_SC_RFPOWEIOT ...t et 228
UCBIOAPI_SC_RFFUNCHION ... sttt ss s sasas seasaens 229
UCBIOAPI_SC_REAASEIIA! ..ottt ss ettt tsa s enas e 230
UCBIOAPI_SC _REAUABIOCK. ...t ettt s 231
UCBIOAPL_SC_WIEBIOCK.ottt s sanan 233

Page 14 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBIOAPI_SC _REAUSECION ...t ee st es st st s e ssasssas seasasens 235
UCBIOAPI_SC WIEESECION ...t sttt s st sas seassens 237
UCBIOAPI_SC_ReadSectOrFieldCONTENT ...t eens 239
UCBIOAPI_SC_WriteSectorFIeldCONTENT ..ot 241
UCBIOAPI_SC PIrEVAIUE ...ttt st s st e asnas e 243
UCBIOAPI_SC REAAVAIUE ...t s s essas s seasssen 245
UCBIOAPI_SC _INCIEMENTVAIUE ...ttt ettt s s esna oo 247
UCBIOAPI_SC _DeCremMENTVAIUE ...t e 249
UCBIOAPI_ SC WItES@CEOITIAIRT ...ttt ettt tes s esea oo 251
UCBIOAPL_SC_REQA ...t st ssss st ss st sss st st s ssnssaens 253
UCBIOAPLSC_WUPA ...ttt s sss sttt ss bbb s ssnnen 254
UCBIOAPI SC _SEIECT .ottt ettt s s sesss e ssasen 255
UCBIOAPLLSC_HAITA ...ttt s sanan 256
UCBIOAPI_SC_RALS ...ttt eeees s s sa s ssss s sassssssas sesssassassanes 257
UCBIOAPL_SC_PPSREQUEST ...ttt sttt sssss bbbt ss st ssssnses 259
UCBIOAPI_SC _BIOCKFOIMIAT ...ttt s 261
UCBIOAPI_SC _DESEIECT ...ttt ess s ass s ass s ass st sene e esnaseseas 263
UCBIOAPL_SC_TYPEA_ACHIVESTALE. ...ttt sttt sse e 264

6. API Reference for COM......uiiieeeceeneereeeeeeeesssssssccsssssssssssees 205

6.1, UCBIOBSP ODJECt ... sttt ssss st st ssss st ss st s s sssnns 265
B.1.1. MeEthOOS . e 265
B SEtSKINRESOUICTE... .ottt ettt st 265

LT 2 o o 01T o == 266
B EITOTCOUE oottt sttt bbbt et 266

B ErTOIDESCIIPLION oottt ettt et 266

u DIBVICE ..ttt et be st sttt 266

B EXEFACHION e ettt bbbt 266

B MAECNING st sttt bs st st bs bbbt 267

[] FPDATA ...ttt sses sttt s st s sttt sssen s n st sens 267

B FPIMAGE et ases sttt ettt sttt seens 267

B FASESEAICN oo sttt st 267

B SMANECAT oottt sttt et 268

B CheckValidityMOAUI ...ttt 268

B MJOIVEISION oottt as ettt 268

B MINOIVEISION ..ottt sttt e ssenes 268

B BUITANUMDET oottt ettt ettt st 269

B MaXFINGEISFOIENTON] ...ttt st 269

B NeCESSATYENTOINUM ...ttt ss st s s ssnnses 269

B SAMPIESPEIFINGET ...t ettt st 270

Page 15 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B DEfaURTIMEOUL .ottt ettt st b s st st 270

B SecurityLevelForEnroll / SecurityLevelForVerify / SecurityLevelForldentify 270

B WINAOWSEYIE oottt ettt bbb 271

B WiINAOWOPTION oottt ettt sss st st ss st est s st 271

B PArENTWING oottt ettt sttt 272

B FINGEIWING oottt ae ettt 272

B CAPTIONMST ettt as et bbb ke 273

B CANCEIMSG ettt st bR 273

B FPFOreColor / FPBACKCOION ...ttt ssss st ssse st sss s eseens 273

B DisableFiNgerFOrENIOI] ettt ess s seesseests 274
6.2, IDEVICE INTEITACE ..o ettt et 275
B.2.0. METNOAS ..t 275
Bl OOttt sttt sttt R AR Attt 275

B 0SBttt a s et s st AR SR E SRR SRA R ARt b bt 275

B ENUMIEIATE e ettt et sttt 276

B AQJUST et as ettt A s SR s SRttt 276
LT = o 01T o == 277
B EITOICOUE ettt st s bbbt ettt 277

B ErTOrDESCIPTION ..o ettt bbbt bbb ssnes 277

B ENUMCOUNT ettt ettt ettt 277

B ENUMDEVICEID ..ottt ettt et 277

B ENUMDEVICENGMEID ...ttt sttt st 278

B ENUMINSTANCE oo sttt e et e et 278

B ENUMDEVICENGME. ...t ettt ettt st 278

B ENUMDEVICEDESCIIPION ...ttt ettt bbbttt st bbb sss st nssnnen 279

B EnUMDEVICEDI / ENUMDEVICESYS ..c.cvomceereeeeeeieceesceteeessseessssesssssesssssesssssessssessessssnsssssnesees 279

B ENUMDEVICEAUTOON. ...ttt ettt sttt e 279

B EnumDeviceBrightness / EnumDeviceContrast / EnumDeviceGaincoovcomeeeerneveenn. 280

B OPENEADEVICEID........ietets sttt e s s ssnnes 280

B DeviceNamelD / DeVICEINSTANCE ...ttt st snsssssene 280

B DEVICEID ..ttt et s e e ket 281

B ImageWidth / IMageHEIGNT. ... et sess st ssesen e 281

B Brightness / CONTrast / GaiN ..ttt ees st seess st ss e eseens 281

B ISFINGEIEXISTEA ettt eessss sttt ss sttt bt s st stnnen 281
6.3, IEXEraction INtEITACE ...ttt e 283
B6.3.1. MEINOAS . 283
B G U ettt ettt sttt et bt et 283

B ENPOI] ettt ettt sttt S st RS stesst st 284

LT T2 o o o 1= o == 285
B EITOICOUE ettt st ss bbbt et 285

Page 16 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

B ErTOrDESCIIPTION ..o ettt bbbt bbb 285

B FIR ettt st R SRR 285

B FIRLENGEN. oottt ettt ettt 285

B TEXEFIR ettt et e 286

B FIRFOMMAT oo ettt bttt 286
6.4. IMatChing INTEITACE ...ttt s 288
B6.4.1. MethOOS ... e 288
B VEIITYMAICN e ettt bbb 288

B VBIIfY ettt ettt Rt 288
B.4. 2. PrOP I S et 290
B EITOTCOOE ittt ettt bbb 290

B ErTOrDESCIIPTION ..ot ettt sttt e 290

B MaEChINGRESUIT oot ettt et 290

B ISPAYIOAAEXISTEM... ...t st st sss st st 290

B PAYIOQA ettt ettt e s ket 291

B PAYlOAALENGtN ..ottt st 291

B TEXEPAYIOA ..ot ettt b 291
6.5. IFPDAta INTEITACEoouireicriiceiceei st sese s s 293
B6.5.1. MethOOs ... e 293
B EXPON T ettt et e Re st 293

B IO Tttt es ettt sttt 294

B CreateTeMPIALE .o sttt es s s 296
LTS T2 o o 01T o == 297
B EITOICOUE ettt st s bbbttt bbbt 297

B ErTOrDESCIIPTION ..o ettt bbbt bbb bsnnes 297

B TOtAIFINGEICOUNT ..ottt sttt ettt s ss s s s 297

B FINGEIID ettt ettt e s et 297

B SAMPIENUMDET ..ot et sss st st st et 298

B FPSAMPIEDATA ... ettt e 298

B FPSaMPIEDAtalength ...ttt e 299

B FIR ettt st R 299

B FIRLENGEN st et s sttt be st bt s 300

B TEXEFIR it stk s 300

B FIRFOIMAT oottt ettt ettt s st ees 301
6.6, IFPIMAGE INTEITACE ..ottt st 302
B.6.1. MeETNOAS ... 302
B EXPON ettt sttt R AR ARttt 302

B EXPOITEX ottt sttt ettt 302

Bl SAVE ottt e e e ettt 303

Page 17 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

LT T2 o o o 1= o == 305
B EITOTCOUE oottt et ettt e saesseeeen 305

B ErTOrDESCIIPTION ..o ettt bbb snes 305

B TOtAIFINGEICOUNT .ottt sttt s bbbt s ss st 305

B FINGEIID ettt ettt e e et 305

B SAMPIENUMDET ..ottt ettt est bbb et 306

B ImageWidth / IMageHEIGNT. ettt e 306

u RAWDATA ...t ettt bbbt st s s nses 307

B AUAIDATA oot sttt ettt 307

B AUAIEDAIALENGLN ettt ettt e 308

B TEXEAUAIEDATA ...ttt bbb st bbb benes 308
6.7. IFaStSEArCh INtErfaCe ..ottt e 309
B.7. 1. MeEtNOOS . e 309
B AAFIR oottt ettt st st 309

B REMOVEFD e bbb sttt 309

u REMOVEUSET ...ttt sttt bbbt ses e bse b s s st esanen 310

B ClEAIDB. ... bbbttt be s et 311

B SAVEDBTOFRIIE oottt s seeean 311

B LOQAADBFIOMFIIE .o sttt bbbttt bbb ssnes 311

B TAENTITYUSEN oottt st 312

L T2 o o 01T o == 313
B EITOTCOUR oottt ettt e seeeen 313

B ErTOrDESCIIPTION ..o ettt bbbt bbb bsnnes 313

B FPCOUNT ittt e ebse sttt e s et st bbbt 313

B FPINTO s sttt ettt 313

B ISFPEXISTEA ettt sttt sttt 314

B AJAEAFPCOUNT ... bbbttt ssnes 314

B AJAEAFPINTO oottt sttt bbb 315

B MatCNEAFPINTO ..o bbb s 315

B MaXSEAICHTIME ...t st seneen 316

B USEGIOUPMALCN ...ttt bbbt e ssnen 316

B MAtCNMELNOt e aeeen 316
6.8. ITemplateINfo INtErfaCe ...ttt 318
OIS Tt AU o 0] o 1=T g 1= PP 318
] USEIID ..ttt sttt sttt s sttt seees 318

B FINGEIID et bttt et 318

B SAMPIENUMDET ..ottt bbbt e bbb snen 318
6.9, ISMArtCard INtEITACE ..ottt s 319
B.9.1. MEthOOS . e e 319

Page 18 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

[] REPOWEIOIN ..ottt bbbt bbbt a s sa bt bes b s sesaesaes 319
] REPOWEIOT ..ot s snssassssssassnssanen 320
[] REFUNCHION oottt sttt sttt e s s e s s snen 321
] REAASEIIA ...ttt ss s sas sesassasssssassnssssesanes 322
[] REAABIOCK ..ottt sttt ettt eraes s sssaestes s s 323
B WIEIEEBIOCK ettt s sne s 324
[] REAASECEON ...ttt ettt sttt et e s s st s e s s snen 325
] L AT TSIy =T et] OO U U TUO 326
[] ReadSECtOrFIEIACONTENT ...ttt e saean 327
B WriteSeCtOrFIRldCONTENT ...ttt s 328
[] PIEVAIUE ..ottt ettt st a bt ss e sa st sa st s s s 329
] REAAVAIUE ... ettt s s seassssssssansnsesnsanes 330
B INCTEMENTVAIUE ..ottt et 331
] DECIEMENTVAIUE.........eceee et snses e srassassasnen 332
B W ESECEOITIAINE oottt s e 333
B REQA ettt e AR R A At 334
B WUPA ettt ettt A R ettt 334
] SEIBCT .ot et s n e 334
B HAIEA ettt ettt bbb a st ran 335
] RATS <ottt sttt a et sae b et et ae b st s et nes 336
B PPSREGUEST ...ttt et sttt sttt 337
u BIOCKFOIMAT ...t sas s sassa s sassnssanen 338
[] DIESEIECE ...ttt ettt sraesa et saest et raens 339
B TYPEA_ACHIVESTIATE ...ttt ettt st 340
LTS T2 o o 01T o == 341
u EITOTCOAE .o e s st srassnssasssassassnsssnen 341
B ErTOrDESCIIPTION ..o ettt bbbt bbb bsnnes 341
B LED ettt ettt et en s ranine 341
B AULNIMOAE ettt et e raes s s st 341
B KEYA [KEYB oottt sttt sttt st 342
B RESUIBUTTEI oo et e saneen 342
B RESUILENGEN oo ettt ettt st st 343
B VAU ettt ettt ettt sttt ran 343
] 1Y =1 L= OSSOSO O PO O OO OO OTO 344

.0 COMMION TEOIMIS ettt e e e e e e e eesesesesenaeseseeeesesas s s seen seeesaeneenenenens 345
] DBVICE AIIVET et eee e et ees s et ees s st s e e se st eessseas e sesaseas s e e s eeassseasaseasaseens 345
] UCDVICEAI ettt s ss st eassss s sese esessassasssssessaes 345
[] UCBIOBSPAIL ettt et e et e s es s eeeee s e esestae s sesesen seeeasaeeseseeeassesesen 345

Page 19 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B SKIN fIl0i ettt e eets et b sttt Rt et 345
7.2. Development USING DLL ...ttt ssss st sssssssssss seesssnns 345
7.3. Development USING COM ... sssesssse s s st sssss s ssssssssssessessnes 346
B UCBIOBSPCOM.AIL .ottt ssssessssssss st st ss s st s ssnssss s ssnssen 346
7.4, Development USING INET ..ttt st st ss e 346
B NET Framework v2.0 OF NIGNET ...t sess s ssseseseese o 346
B UNIONCOMM.SDK.UCBIOBSPAIL......cieiieeeeeeeeereiee ettt essseessse e e s sesssones 346
7.5. Development over BIOAPL FrameWOrK........c..cooiiiinriierineiineiseeieeiesesssssseesessssssssssssssseens 346
B BioAPI Framework v2.0 OF NIgher ...t seeesee s 346
B UCBioBSPdIl distribution and registration.........coececeneceenneceneeeinseeeseseesseeeseeeeseeees 346

Appendix A. How to enroll fingerprint properly................. 347

AL, Proper Way to Enter FINGEIPIiNt ...ttt sss sssssssens 347
A.2. Improper Fingerprint INput Method ... steees s 348
A.3. Procedures to Handle Authentication Failure ... 348
AA4. Fingerprint Registration, More Convenient with This Way ..., 349
A.5. Considerations Depending on the Condition of User Fingerprint.......c..ccoccoovvenrennnnenn. 349

Page 20 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

1.0verview

UCBioBSP SDK is a high-level SDK created to develop applications using Union Community’s
fingerprint recognition devices and it supports SPI for BioAPI v2.0 proposed by the BioAPI
Consortium. Also, it is a Software Development Kit that additionally provides extended API similar in
form as API used in BioAPL

Because UCBioBSP SDK provides all APIs related to fingerprint authentication and GUI (Graphical User
Interface) for registration and authentication, developers can add fingerprint recognition functions to
their products in development with minimal effort.

Since APIs for the smart card are provided, writing and reading the data that a user desires onto the
smart card can be easily accomplished.

For easy and convenient use, this document provides detailed descriptions on each of APIs and
examples on their use.

Page 21 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

1.1. Special Features of SDK

UCBioBSP SDK has the following special features.

BioAPI v2.0 compatibility
Supporting the international standard API BioAPI v2.0 (ISO/IEC 19784-1:2005) for bio
authentication

Various programming languages provided
Providing modules that can be used in various languages such as C, C++, Visual Basic, Delphi
and etc. & also providing samples

Easy to use GUI provided
Customization for each user possible by providing GUI optimized to fingerprint and skin type
Ul

Multi fingerprint support
Management of 10 fingerprints for each user as integrated data possible

Powerful encryption provided
Data security using international standard encryption algorithm AES (Advanced Encryption
Standard)

Self-protection function
Self-protection function available to prevent modification and forgery of module

Smart card support
Providing the function of reading and writing values onto smart card (Mifare, ISO14443-A)

Page 22 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

1.2. Provided Module
The following modules are included in UCBioBSP SDK.

® UCBioBSPdlIl
As the core module of UCBioBSP SDK, it is considered to be the main module that can achieve
all functions related to fingerprint authentication. This module must be included in the
development process using UCBioBSP SDK.
APIs that can be used in C/C++ are provided and SPI for BioAPI v2.0 is also included to be
registered and used in the BioAPI framework environment. (Detailed information on BioAPI can
be found at http://www.bioapi.org or obtained from BioAPI framework providers.)
Relevant sample codes can be found in the DLL folder and BioAPI folder of the provided
Sample folder.

® UCBioBSPCOM.dII
It is a COM (Component Object Model) module developed to support users of RAD (Rapid
Application Development) tools such as Visual Basic and Delphi and the web development.
Because UCBioBSPCOM.dII exists in a level above UCBioBSPdll, it works only with the presence
of UCBioBSPdIl. Also, it does not have all functions provided by UCBioBSPdIl but has some
functions not provided by UCBioBSPdIl.
Relevant sample codes can be found in the COM folder of the provided Sample folder.

® UNIONCOMM.SDK.UCBioBSP.dIl
It is a class library module for .NET that can be used in languages for the Microsoft .NET
environment such as C#, VisualBasic. NET and ASPNET.
As in COM module, UNIONCOMM.SDK.UCBioBSPdIl exists in a level above UCBioBSPdIl and it
works only with the presence of UCBioBSPdIl.
Relevant sample codes can be found in the dotNET folder of the provided Sample folder.

® Resource DLL
UCBioBSP SDK provides a method to use resource file for the skin produced outside.
UCBioBSPdIl has the built-in skin in English by default. To use Ul in a different language or
form, external resource files can be read using skin related to API provided in UCBioBSP SDK.
Currently, English and Korean skin resource DLLs are provided as default.
Procedures to create the customized skin resource DLL are provided in a separate document.

Page 23 of 350

http://www.bioapi.org/

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

1.3. Development Model

The structure of development model is given in the below figure.

Application C C++, VC++, ..
Layer

C#, VB.NET, ASPNET, ... VB, Delphi, Web ...
UCBioBSP

API Layer [UNIONCOMM.SDK.UCBioBSP.dI] [UCBioBSPCOM.dII]

il vy 1l
[Skin Resource dll] |:> _

Device Driver

Page 24 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

1.4. Fingerprint Data Structure

In UCBioBSP SDK, the fingerprint data is represented in the form of FIR (Fingerprint Identification
Record). As a data structure to represent fingerprint data of a person, a FIR can include fingerprint
data of up to 10 fingers as well as image data.
FIR largely consists of three parts; format, header and data block.

Format Header Data Block
4Bytes 72Bytes Variable size (=Header. DatalLength)
14.1. Format

Format is a value that assigns the form of FIR, and this value can change the structures of header
or FIR. Only the value of 1 that corresponds to UCBioAPI_FIR_FORMAT_STANDARD is currently
available. When a new FIR structure is available in the future, this value is subject to change.

14.2.

Header

Header consists of the following structures and its size is 72 bytes.

Header Data Version Data Purpose | Quality | Optional | Reserved

Length Length Type Data

4Bytes 4Bytes 2Bytes 2Bytes 2Bytes 2Bytes 52Bytes 4Bytes
Length | UUIDInfo | PIN1 | PIN2 | Privilege | SiteID | IssueDate | ExpireDate | Reserved
4Bytes | 20Bytes | 4Bytes | 4Bytes | 4Bytes | 4Bytes 4Bytes 4Bytes 4Bytes

® Header Length
It has the length of header. This value is always 72.

® Data Length
It has the length of data block, the fingerprint data. Fingerprint data is variable as is varies user

by user.

Version

It shows the version information of FIR. This value is currently 1.

Data Type

It shows the fingerprint data type stored in FIR. FIR can have raw image data and special
feature data of fingerprint and also indicates if data are encrypted.

Page 25 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

® Purpose

It shows a purpose of FIR data use. This value is different according to purpose of use, such as
verify, identify, enroll, audit, etc.

® Quality
It has the quality value of fingerprint data. This value ranges from 0 to 100. The higher the
number is, the better quality of fingerprint data is.

® Optional Data
It is a space in FIR to record additional informations. These values can be used for more refined
authentication during a future fingerprint authentication. Information that can be added is
provided below.

N Length
It has the length of optional data. This value is always 52.

®m UUIDInfo
It can assign information on unique UUID (Universal Unique Identifier) value of FIR.
It has a value of UCBioAPI_FIR_UUID_INFO structure.

N PIN1/PIN2
PIN (Personal Identification Number) information can be stored here.

W Privilege
FIR authority information can be assigned. The value ranges from 0 to 9. As the number gets
bigger, a higher authority is required.

m Site ID
The ID of a specific site where FIR data are to be used can be assigned.

B Issue Date
The date of FIR data creation can be assigned.

W Expire Date
The expiration of date until when FIR data are valid can be assigned.

B Reserved
Reserved area

® Reserved
Reserved area

Page 26 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

1.4.3. Data Block

It is an area where fingerprint data are stored. It is an encrypted area in binary type. It can have
special feature data or raw image data of fingerprint.

The size of fingerprint may vary depending on users and the size of data block may vary
depending on the number of the registered fingers.

The size of data block can be found by referring to the data length of header.

Page 27 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

1.5. Terminology Description

Terminologies used in this document are described here.

BSP
BSP is the abbreviation of Biometric Service Provider and it means service module for bio
authentication.

Template / Sample
It means specializd fingerprint data for a single fingerprint.

Payload

It means an area inside FIR data to include specific information of a user. This kind of payload
information is stored in encrypted state inside FIR and the value is returned only when
authentication succeeds.

FIR

As the abbreviation of Fingerprint Identification Record, it is the user by user fingerprint data
value. Template information or raw image information and payload information for a large
number of fingers can be included in a single FIR.

FastSearch
It is the name of the high-speed authentication engine for 1:N authentication provided by
UCBioBSP SDK.

BioAPI

A collection of Application Programming Interface for bio authentication designated by BioAPI
Consortium is designated as the international standards (ISO/IEC 19784-1:2005). Detailed
information can be obtained from http://www.bioapi.org.

Page 28 of 350

http://www.bioapi.org/

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

2.Installation

2.1. System Requirements

The following system requirements are necessary to install UCBioBSP SDK.

oS
Supporting Windows 98SE/ME/2000/XP/2003/Vista, and other Windows OSs with USB support.

CPU
CPU above Pentium

Web environment
Server: IIS (Internet Information Server) 4.0 and higher
Client: IE (Internet Explorer) 5.0 and higher

Device

Union Community's USB fingerprint recognition device for fingerprint acquisition.

UCBioBSP SDK currently supports all fingerprint recognition devices for PC peripherals
manufactured by Union Community. SDK will be provided for devices to be released in the
future so that support is possible without modifying developed sources.

Since UCBioBSP SDK does not include device drivers, a driver for each device must be
separately installed.

Page 29 of 350

UNION

COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

2.2.
1)

2)
3)

4)

Installing

Insert the installation CD into the drive.
Run Setup.exe file in the installation CD.
Click the Next button to start installation.

InstallShield Wizard X

Welcome to the InstallShield Wizard for UNION
COMMUNITY - UCBioBSP SDK

The InztallS higld® wizard will install INION COMMURITY
- UCBioBSP SDFK. an your computer. To continue, click
MHext.

LMty | Caneel

After checking the license agreement, click the Yes button if you agree with it.

InstallShield Wizard (X
License Agreement
Pleasze read the followaing license agreement carefully, “u!m

Press the PAGE DOWHN key to see the rest of the agreement.

UMION COMMUMNITY EMD USER LICEMSE AGREEMENT

22

UMION COMBMUNITY Co., LTD. ["UMIONCORB"] iz granting vou [an individual or an
entity, either of which i referred to herein az "Licenses'] a license to use UNIONCOMM's
UCBioBSP SDE[Software Developer's Kit], including computer software, hardware,
azzociated media and prinked matenalz: ["'SDE") only upan the condition that Licenzee
accepts all of the terms and conditions contained in this User License Agreement [the
"Aareement'’).

1. Grant of Licenze. Thiz Agreement grants Licensee a personal, limited, non-transterable, o

Do vou accept all the terms of the preceding License Agreement? |f you choose Mo, the
setup will close. Toinstall UMIOM CORMMUMNITY - UCBioBSP SDE., pou must accept this

agreement.

¢ Back Tes Mo

Page 30 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

5) Enter user name, company name and serial number. The serial number can be obtained when

purchasing SDK.

InstallShield Wizard

Customer Information

Pleaze enter your information.

User Mame:

],

COMMURN

MUN

|Uni|:|n

LCompany Mame:

|Uni|:|nE|:|mm

Senal Murber:

Install thiz application far;

" Only for me

" Arpone who uses this computer (all users]

< Back |

Cancel

6) Designate the installation folder.

InstallShield Wizard

Chooze Destination Location

Select folder where Setup will install files.

another folder.

Destination Folder

C:A A nionCommunitysCBioBSP SDEY

Setup will install UNION COMMUMITY - UCBioBSP SDK in the following folder.

To ingtall to thiz folder. click Mest. Toinstall to a different folder. click Browse and select

< Back

X
LINININ

MUNMNITY

Browse. ..

Cancel ‘

Page 31 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

7) Installation type is designated. If Typical is selected, most components in SDK are installed as

general
components to be installed, select Custom installation.

InstallShield Wizard

Setup Type
Select the Setup Type to install,

Click the type of Setup pou prefer, then chick Mest.

LZErs.

(s L.pmag Frogram will be installed with the most common optiohs. Recommended for
miogk Ligers.

(" Compact Program will be installed with minimurm required options.

" Custom r'ou may chooge the options you want to inztall. Becommended for advanced

¢ Back Mext » |

installation. Compact installation excludes sample codes of SDK. To select

Cancel

8)

InstallShield Wizard

Select Features

Chooze the featurez Setup will install

Description

8 Core Modules

g4 Developer Modules
=1 50K Samples

DLL Samples

COM Samples

BioAPl 5amplesz

MET Samples

spstem

40683 K.
12358308 K.

Space Required on C:
Space Available on T

Select the features vou want to install, and clear the features vou do not want to install,

Install core module of SDE to

¢ Back Mest > |

If Custom installation is selected, the following components can be selected and installed.

Cancel

Page 32 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

9) After checking all installation options, click the Next button to proceed.

)
LINIOIN

co UMITY

InstallShield YWizard
UCBioBS5P 5DK

Installation will be proceeded below setting..

Current Settings:

Uszer name: Union
Campany: UnionCormnm
Serial code:

Inztallation folder: C:%Program FileshUnionCommunityh U CBIoBSE SDEN
Inztallabion type; Custom

£ Back

Cancel

10) SDK installation is proceeding.

InstallShield Yizard

Setup Status

UMIOM COMMUMITY - UCBioBSP SDEK Setup iz performing the requested operations.

C:h . hres\UCBioBSP_FaztSearchDemo.ico

7%

Page 33 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

11) When file copying is completed, the prompt will ask you if module for .NET Framework
should be installed. If .NET Framework is not used, click “No” not to install the class library
for .NET. If necessary, module for .NET can be added later. But if development on .NET
framework is required, click “Yes” to proceed with installation.

12) If "Yes" is selected, .NET Framework 2.0 is installed as shown in the following figure. If .NET

Framework is already installed, this job can be canceled.

Microsoft .NET Framework 2.0 E“E|E|

O3 3

Eutracting netfx.msi

13) When .NET Framework installation is completed, the installation of class library for .NET

proceeds. Click the Next button to start the installation.

i= LINION COMMUNITY - LICBioBSP SDK for .NET

SDK for NET Setup Wizard

SDK for MET on pour computer,

or criminal penalties, and will be prozecuted to the masinun extent possible under the

Cancel

Welcome to the UNION COMMUNITY - UCBioBSP § &

The installer will guide wou thraugh the steps required tainstall DMION COMMURITY - UCRioBSP

WARMING: This computer program iz protected by copyright law and international treaties.
Unauthorized duplication or distibution of this program, or any portion of it, may result in severe civil
la.

EoX

Page 34 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

14) Designate the installation folder. Class library for .NET is installed at the Bin folder under the

designated folder and it is automatically registered at GAC (Global Assembly Cache). Click the
Next button to proceed with the installation.

% UNION COMMUNITY - UCBioBSP SDK for .NET =3

Select Installation Folder

The inztaller will install UMIOW COMMUMITY - UCBioBSP SDK for MET ta the following folder.

Tainstall in thizs falder, click "Mext". Ta install to a different folder, enter it below or click "Browse"

Falder:
CProgram Files®UnionCommmunityWUCBIoBSF SDkh

Browse. . ‘

Disk Cost.. |

Install UMNION COMMUMITY - UCBioBSP SDE for MET for pourself, or for anyone who uses this
computer:

* Everpone

" Just me

Cancel < Back

15) When the installation of module for .NET is completed, click the Close button to finish
installation program for .NET.

& UNION COMMUNITY - UCBioBSP SDK for .NET =13

Installation Complete

UMION COMBMUMITY - JCBicBSP SDK for MET haz been successiully inztalled,

Click "Close' ta exit.

Flease uze Windows Update to check for any critical updates ta the MET Framework.

Page 35 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

16) You will be returned to the original SDK installation screen to finish installation.

InstallShield Wizard

InstallShield Wizard Complete

Setup has finizhed installing UNMIOMN COMMUNITY - UCBicBSP
SDK on wour computer.

Page 36 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

2.3. Description of Files and Folders to Be Installed
When installation is completed, the following files are installed in the system.

2.3.1. Windows System32 folder
Core modules for SDK use are installed. The files in below are installed.

®m UCBioBSP.dlII
Core module of UCBioBSP SDK. It is responsible for performing all functions of SDK.

Since SPI (Service Provider Interface) for BioAPI is provided, it can be registered at BioAPI

Framework.

m UCBioBSPCOM.dII
COM module of UCBioBSP SDK.

2.3.2. GAC (Global Assembly Cache) folder

The below file is installed at the GAC folder where the class library for .NET Framework
environment is installed. During the SDK installation, it is installed if library for .NET is installed.

B UNIONCOMM.SDK.UCBioBSP.dII
Class library module for .NET.

2.3.3. (Installation folder)\Inc
Various header files required to develop under C/C++ using SDK are included in this folder.

®m UCBioAPLh

If this file is included as the main header file of UCBioBSP SDK, UCBioAPI Basic.h,

UCBioAPI_Error.h, UCBioAPI_Type.h files are included internally and automatically.

B UCBioAPI_Basic.h
The basic data types used in UCBioBSP SDK are defined.

® UCBioAPI_Error.h
The error values used in UCBioBSP SDK are defined.

®m UCBioAPI_Type.h
The data types and structure informations used in UCBioBSP SDK are defined.

B UCBioAPI_Export.h

Page 37 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

The functions for FIR data conversion are defined.

B UCBioAPI_ExportType.h
The data types and structure informations for FIR data conversion are defined.

B UCBioAPI_FastSearch.h
The functions to use the search engine for 1:N matching are defined.

W UCBioAPI_FastSearchType.h
The data types and structure informations to use the search engine for 1:N matching are
defined.

B UCBioAPI_SmartCard.h
The functions to use the smart card are defined.

B UCBioAPI_SmartCardType.h
The data types and structure informations to use the smart card are defined.

2.3.4. (Installation folder)\Lib
Library files for link to develop under VC++ using SDK are included in this folder.

® UCBioBSP.ib
Library file for link created for VC++. It is used to link UCBioBSPdlII statically under VC++.

2.3.5. (Installation folder)\Bin
Core files required in running SDK and sample execution files are included in this folder.

®m UCBioBSP.dll / UCBioBSPCOM.dII
Identical file to the one installed in the Windows system32 folder.

B UCBioBSPCOM.cab
CAB file signed after compressing to enable a distribution of UCBioBSPCOM.dII over the Web.

B Demo application

Some of demo programs to test functions of UCBioBSP SDK briefly are included in this folder.
All demo program sources are provided at the Samples folder.

2.3.6. (Installation folder)\dotNET

Page 38 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Class library files for dotNET required in running SDK are included in this folder.

® UNIONCOMM.SDK.UCBioBSPdlI
Class library module for .NET. Identical file to the one installed in GAC.

2.3.7. (Installation folder)\dotNet\Setup
Installation files to install class library for .NET at GAC are included in this folder.

B Setup.exe (UCBioBSP.NET_Setup.msi)
Installation file of class library for .NET.

2.3.8. (Installation folder)\Samples
Sample source codes for each language are included separately folder by folder for distinction.

B BioAPI
Sample codes for BioAPI running in BioAPI Framework are included. But, to run these
samples, BioAPI Framework v2.0 must be installed and UCBioBSPdIl must be registered at
Framework.

m COM
Sample codes that can be developed using UCBioBSPCOM.dII are included.
1) VB6: Samples created for Visual Basic 6.0 are included.
2) ASP: Samples created for ASP (Active Server Page) running in IIS are included.

mDLL
Sample codes that can be developed using UCBioBSPdlIl are included.
1) VC6: Samples created for Visual C++ 6.0 are included.

B dotNET
Samples codes that can be developed under Microsoft .Net environment using
UNIONCOMM.SDK.UCBioBSPdll are included.
1) C#: Samples created for VisualStudio.NET 2005, C# are included.

2.3.9. (Installation folder)\Skins
Languages by language skin resource files are included. Only English and Korean are currently
included.

Page 39 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

3.Programming by using DLL

This chapter describes how to program using DLL.
The language used in description is Visual C++ and other language users should make an

appropriate modification for each language.

3.1. Function Call Structure

[Initialization: UCBioAPI_Init()

A

\

4 N
Basic BSP functions:
UCBioAPI_GetVersion(), UCBioAPI_GetlnitInfo(),
UCBIioAPI_LoadSkinResource(), ...
& J
Matching & Memory Functions:
UCBIioAPI VerifyMatch(), UCBioAPI_GetFIRFromHandle(), ...
a N

Device related functions:

[Device Open: UCBioBSP_OpenDevice()

[Device Functions: UCBioBSP_Enroll(), UCBioBSP_Capture(), ...]

[Device Close: UCBioBSP_CloseDevice()

(&
4

(&

Fast search engine functions:

[Fast search engine start: UCBioBSP_InitFastSearchEngine()

)

ﬁ[Fast search Functions: UCBioBSP_IldentifyFIRFromFastSearchDBY(), ... J

[Fast search engine close: UCBioBSP_TerminateFastSearchEngine()

)

J

[Termination: UCBioAPI_Terminate()

Page 40 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.2. Initialization and Termination

How to initialize and terminate UCBioBSP SDK is described here.
3.2.1. Initializing
To use UCBioBSP SDK, the UCBIioAPI Init function is called first for initialization. UCBioAPI Init
function returns the Handle value of UCBioBSP SDK and this handle value is used in almost all

functions provided by SDK.

B Example

UCB10API_HANDLE m_hUCBioAPI;

UCBI0OAPI_RETURN err = UCBioAPI_Init(&m_hUCBioAPI);
if (err = UCBioAPIERROR_NONE) {

// Failed to initialize UCBioBSP
} else {

// Succeeded to initialize UCBiIoBSP

3

3.2.2. Terminating
To terminate a use of SDK, UCBioAPI_Terminate function must be called for termination. This
process enables to release the memory used inside UCBioBSP SDK.

B Example

UCB10API_HANDLE m_hUCBioAPI;

UCBi0oAPI_RETURN err = UCBioAPI_Terminate(m_hUCBioAPIl);
if (err '= UCBiIioAPIERROR_NONE) {

// Failed to terminate UCBioBSP
} else {

// Succeeded to terminate UCBioBSP

}

Page 41 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.3. Basic Setting

Before using SDK following a successful initialization of UCBioBSP SDK, the basic setting can be
obtained or new values can be assigned.

3.3.1. Obtaining SDK version
The BSP version of SDK currently in use can be obtained.

H Example

UCBioAP1 _VERSION ver;
memset(&ver, 0, sizeof(UCBioAPI_VERSION));

iT (UCBioAPI_GetVersion(m_hUCBioAPI, &ver) == UCBIOAPIERROR_NONE) {
CString szVer;
szVer .Format(_T('UCBioBSP Version : v%d.%04d"), ver._.Major,
ver _.Minor);
SetWindowText(szVer);
} else {
// Failed to get version of BSP

3

3.3.2. Obtaining basic setting values & Setting up new values
The basic setting values of SDK can be obtained or new values can be set up.

B Example

UCBiOAPI_INIT_INFO_O initInfoO;
memset(&initInfo0, 0, sizeof(UCBioAPI_INIT_INFO _0));

UCBioAPI_RETURN err = UCBioAPI_Getlnitinfo(m_hUCBioAPI, 0, &initinfo0);
it (err == UCBioAPIERROR_NONE) {

// Succeeded to get init information
} else {

// Failed to get init information

}

B Example

UCBioAPI_INIT_INFO_O initiInfoO;
memset(&initInfo0, 0, sizeof(UCBioAPI_INIT_INFO _0));

initInfoO.StructureType = 0;

Page 42 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

initInfoO.MaxFingersForEnroll = m_nMaxFingersForEnroll;
initinfoO.NecessaryEnrol INum = m_nNecessaryEnrol INum;
initInfoO.SamplesPerFinger = m_nSamplesPerFinger;
initInfoO.DefaultTimeout = m _nDefaultTimeout;
initInfoO.SecurityLevelForEnroll = m_nSeculLevelForEnroll;
initInfoO.SecurityLevelForVerify = m nSecuLevelForVerify;
initInfoO.SecurityLevelForldentify = m_nSeculLevelForldentify;
initinfoO.TemplateFormat = m_nTemplateFormat;
initInfoO.LiveDetectLevel = m_nLiveDetectLevel;

UCBioAPI_RETURN err = UCBiIoOAPI_Setlnitinfo(n_hUCBioAPl, 0, &initinfo0);
if (err == UCBioAPIERROR_NONE) {

// Succeeded to set init information
} else {

// Failed to set init information

3

UCBioAPL_INIT_INFO_O structure represents the following values.

B StructureType
It must have the value of 0.

®m MaxFignersForEnroll
The maximum number of fingers allowed for registration during fingerprint registration is
designated. For example, assuming that this value is designated as 2, up to 2 fingers can be
registered when registering fingerprint using UCBioAPI_Enroll function. The default for this
value is 10.

B NecessaryEnrolINum
The minimum number of fingers to be registered during fingerprint registration is designated.
This value must be less than or equal to MaxFingersForEnroll value. For example, assuming
that this value is designated as 2, more than 2 fingers have to be registered during
fingerprint registration using UCBioAPL_Enroll function to complete registration process. The
default for this value is 1.

B SamplesPerFinger
During fingerprint registration, the number of samples to be stored for each finger is
designated. It is fixed at 2 now and modification is not allowed.

B DefaultTimeout
During fingerprint authentication and registration, the basic maximum time that the device

Page 43 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

operates to obtain fingerprint is designated in ms unit. Timeout can be separately

designated later during function call and this value is used @ if
UCBioAPI_USE_DEFAULT_TIMEOUT(-1) is designated. The default for this value is 10000 (10
seconds).

W SecurityLevelForEnroll / SecurityLevelForVerify / SecurityLevelForldentify
Authentication security level used for fingerprint registration/authentication/1:N
authentication can be set for each. Values in below are available.

#define UCBioAPI_FIR_SECURITY_ LEVEL LOWEST €H)
#define UCBioAPI_FIR_SECURITY_LEVEL_ LOWER &)
#define UCBioAPI_FIR_SECURITY_LEVEL LOW 3)
#define UCBioAPI_FIR_SECURITY_LEVEL BELOW_NORMAL &)
#define UCBioAPI_FIR_SECURITY_ LEVEL NORMAL (5)
#define UCBioAPI_FIR_SECURITY_LEVEL ABOVE_NORMAL (6)
#define UCBioAPI_FIR_SECURITY_LEVEL HIGH €
#define UCBioAPI_FIR_SECURITY_LEVEL HIGHER)
#define UCBioAPI_FIR_SECURITY_LEVEL HIGHEST 9

Enroll/Verify has 5 and Identify has 6 as default value.

B TemplateFormat
It can designate the format of FIR data’'s Template. Values in below are available.

#define UCBioAPI_TEMPLATE_FORMAT UNION400)
#define UCBioAPI_TEMPLATE_FORMAT 150500)
#define UCBioAPI_TEMPLATE_FORMAT 150600 &)

The default for this value is UCBioAPI_TEMPLATE_FORMAT_UNION400.

m LiveDetectLevel
It can set up the fake fingerprint detection level when it acquire the fingerprint. Values in
below are available.

#define UCBioAPI_LIVE DETECT LEVEL NONE)
#define UCBioAPI_LIVE DETECT LEVEL TOUCH_ONLY €))
#define UCBioAPI_LIVE DETECT LEVEL_LOW &)
#define UCBioAPI_LIVE DETECT LEVEL HIGH ©))
#define UCBioAPI_LIVE DETECT LEVEL HIGHEST (&)

The default for this value is UCBioAPI_LIVE_DETECT_LEVEL_NONE.

Page 44 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

W Reservedl / Reserved?2
It is not used as reserved area. It has the value of 0.

Page 45 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.4. Using Device

For fingerprint registration and acquisition, a process of opening the fingerprint recognition device
is necessary to use it. Functions required to use devices installed in the PC are described here.

3.4.1. Obtaining device list
Using the UCBioAPI_EnumerateDevice function, information such as the entire list and the total
number of devices currently connected to the PC can be obtained before the use of a device.

B Example
UCBioAPI_UINT32 m_nNumDevice;
UCBioAPI1_DEVICE_ID* m_pDevicelD;

UCBioAPI_DEVICE_INFO_EX* m_pDevicelnfoEx;

int nindex;

UCBioAPI_RETURN err = UCBIOAPI_EnumerateDevice(m_hUCBioAPI,
&m_nNumDevice, &m_pDevicelD,
&m_pDevicelnfoEXx);

it (err) {
// Failed to enumerate device!
return;

}

it (m_nNumDevice == 0) { // No device
nindex = m_comboDeviceList.AddString(_T("'--NO DEVICE--""));
m_comboDevicelList.SetltemData(nindex, UCBioAPI_DEVICE_ID_NONE);
return;

}

for (UCBioAPI _UINT32 1 = 0 ; 1 < m_nNumDevice; i++) {
nindex = m_comboDeviceList.AddString(m_pDevicelnfoEx[i]-Name);
m_comboDevicelList.SetltemData(nindex, m_pDevicelnfoEx[i1].NamelD);

If the UCBioAPI_EnumerateDevice function is used, the total number of devices connected to the
system is passed back as the second argument m_nNumbDevice and device ID is passed back in
array form as the third argument m_pDevicelD. Lastly, more detailed information on the device is
passed back in array form as the fourth argument m_pDevicelnfoEx.

m_pDevicelD and m_pDevicelnfoEx are pointer arrays to structures UCBioAPI_DEVICE_ID and
UCBIioAPI_DEVICE_INFO_EX, respectively. Since the memory for them is managed internally by

Page 46 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

UCBIioBSP SDK, an application does not have to allocate or release the memory.

3.4.2. Opening device

Before the use of a device, it must be opened using the UCBioAPI_OpenDevice function. To open
a specific device, use an argument to assign ID to the device to be opened. To automatically
open the device used most recently, assign UCBioAPI_DEVICE_ID_AUTO to device ID.

B Example

int nDevicelD = UCBioAPI DEVICE_ID AUTO;

if (err == UCBioAPIERROR_NONE) {
// Succeeded to open device

} else {
// Failed to open device

3

UCBi0oAPI_RETURN err = UCBIOAPI_OpenDevice(m_hUCBioAPI, nDevicelD);

Values that can be used as device ID are listed in below.

#define UCBioAPI_DEVICE_NAME_FOHO1
#define UCBioAPI_DEVICE_NAME_FOMO1
#define UCBioAPI_DEVICE_NAME_FOHO3
#define UCBioAPI_DEVICE_NAME_HAM500
#define UCBioAPI_DEVICE_NAME_FOHO1A
#define UCBioAPI_DEVICE_NAME_FOMO1A
#define UCBioAPI_DEVICE_NAME_FPRO2
#define UCBioAPI_DEVICE_NAME_FSHO1RF
#define UCBioAPI_DEVICE_NAME_FOHO1RF
#define UCBioAPI_DEVICE_NAME_FR100
#define UCBioAPI_DEVICE_NAME_FPRO2LFD
#define UCBioAPI_DEVICE_NAME_FOHO1RFL
#define UCBioAPI_DEVICE_NAME_FSHO1SC
#define UCBioAPI_DEVICE_NAME_FPRO2_V30
#define UCBioAPI_DEVICE_ID_AUTO

3.4.3. Closing device

(Ox01)
(0x02)
(0x03)
(0x04)
(0x05)
(0x06)
(0Ox07)
(0x08)
(0x09)
(0x0a) // 10
(Ox0b) /7 11
(0x0c) /7 12
(oxod) // 13
(Ox0e) // 14
(Ox00FF) // 255

When finishing the use of a device, its use must be terminated using the UCBioAPI_CloseDevice

function. Here, the device opened the first must be closed.

Also, to open other device, the device currently in use must be closed first to open a new device.

Page 47 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B Example

int nDevicelD = UCBioAPI_DEVICE_ID_AUTO;
UCBioAPI_RETURN err = UCBiIoAPI_CloseDevice(m_hUCBioAPl, nDevicelD);
if (err == UCBioAPIERROR_NONE) {
// Succeeded to close device
} else {
// Failed to close device

3

3.4.4. Obtaining device information

To obtain information on the device currently opened, the UCBioAPI_GetDevicelnfo function can
be used. Information such as the size of image supported by the device can be obtained.
(Portions of unimportant codes are grayed out.)

B Example

UCBIOAPI_UINT32 m_nDeviceWidth, m nDeviceHeight;

int nDevicelD = UCBioAPI_DEVICE_ID_AUTO;
UCBIoOAPI_RETURN err = UCBioAPIl_ OpenDevice(m_hUCBioAPl, nDevicelD);
iT (err == UCBi10APIERROR_NONE) {
UCBioAPI _DEVICE_INFO_O devicelnfoO;
memset(&devicelnfoO, 0, sizeof(UCBioAPI DEVICE_INFO_0));
err = UCBioAPI_GetDevicelnfo(m_hUCBioAPI, nDevicelD, O,
&devicelnfo0);
iT (err == UCBIOAPIERROR_NONE) {
m_nDeviceWidth = devicelnfoO. ImageWidth;
m_nDeviceHeight = devicelnfoO. ImageHeight;
+
} else {

// Failed to open device

3

3.4.5. Setting fake fingerprint detection level for device
Basically it turn off fake fingerprint detection function in device. If it use this function, it can set
up fake fingerprint detection level before acquiring the fingerprint

B Example

int nLiveDetectLevel = UCBioAPI_LIVE DETECT LEVEL TOUCH_ ONLY;
UCBIOAPI_RETURN err = UCBioAPl_SetLiveDetectLevel(m_hUCBioAPI,

Page 48 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

nLiveDetectLevel);

} else {

3

if (err == UCBioAPIERROR_NONE) {

Page 49 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.5. Understanding FIR Data

To register and authenticate fingerprint, understanding fingerprint data FIR used by UCBioBSP SDK
is essential. The structure of fingerprint data was described in chapter 1 and things to know to use
FIR practically are described here.

3.5.1. The type of FIR
FIR can be classified into the following three types.

® FIR Handle
What the user obtains when registering fingerprint or acquiring image using the API
provided by UCBioBSP SDK is FIR Handle values rather than real FIR data. Since the memory
for this FIR Handle is managed internally in BSP, real FIR data must be obtained from Handle
to store fingerprint data registered by the use at DB or transmit them over the network. To
obtain real FIR data, function such as UCBioAPI_GetFIRFromHandle is required. When the use
Handle is finished, the memory must be released using the UCBioAPI_FreeFIRHandle function.

B FIR (Full FIR)
It is the structure, which includes encrypted binary memory block to real fingerprint data,
obtained from FIR Handle. To obtain this value, function such as
UCBioAPI_GetFIRFromHandle can be used. Refer to chapter 1 for more detailed description
of this structure.

B Text encoded FIR
It is the structure, which includes encrypted memory block in character string type, to real
fingerprint data obtained from FIR Handle. To obtain this value, function such as
UCBioAPI_GetTextFIRFromHandle can be used. For the Unicode, a support for both ANSI
character string and Unicode is possible.

3.5.2. The use of FIR

To use FIR in a function such as authentication, a structure called UCBioAPI_INPUT_FIR must be
used. Since this structure includes union structure, it is a structure that can have all three types of
FIR described above.

typedef struct ucbioapi_input_fir {

UCB10oAPI_INPUT_FIR_FORM Form;
union {
UCBi0oAPI_FIR_HANDLE_PTR FIRINBSP;
UCBioAPI_VOID_PTR FIR;

UCBioAPI_FIR_TEXTENCODE_PTR TextFIR;
} InputFIR;

Page 50 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

} UCBioAPI_INPUT_FIR, *UCBioAPI_INPUT_FIR_PTR;

The use of each FIR according to its type is shown below. (Portions of unimportant codes are
grayed out.)

H FIR Handle

UCBi0API_FIR_HANDLE hFIR;

UCBioAPI_RETURN err = UCBiIoAPI_Capture(m_hUCBioAPI,
UCBi10oAPI_FIR_PURPOSE VERIFY,
&hFIR,
UCBi10API_USE DEFAULT_ TIMEOUT,
NULL,
NULL) ;

UCBioAPI_INPUT_FIR inputFIR;
inputFIR.Form = UCBioAPI_FIR_FORM_HANDLE;
inputFIR. InputFIR.FIRINBSP = &hFIR;

UCBiIOAPI_BOOL bResult;
err = UCBioAPI_Verify(m_hUCBioAPI, &inputFIR, &bResult, NULL,
UCBioAPI_USE_DEFAULT_TIMEOUT, NULL, NULL);

UCBi0API1_FreeFIRHandle(hFIR);

m FIR (Full FIR)

UCBioAPI_FIR TullFIR;
UCBi0API_GetFIRFromHandle(hFIR, &FullFIR);

UCBioAPI_INPUT_FIR inputFIR;
inputFIR.Form = UCBioAPI_FIR_FORM_FULLFIR;
inputFIR. InputFIR.FIR = &Ful IFIR;

UCBi10API_BOOL bResult;
err = UCBioAPl Verify(m_hUCBioAPIl, &inputFIR, &bResult, NULL,
UCBiIoAPI_USE DEFAULT_TIMEOUT, NULL, NULL);

UCBioAPI_FreeFIR(&FUlIFIR);

B Text encoded FIR

UCBioAPI_FIR_TEXTENCODE textFIR;
UCBi0API_GetTextFIRFromHandle(hFIR, &textFIR, UCBioAPI_FALSE);

Page 51 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBi0API_INPUT_FIR inputFIR;
inputFIR.Form = UCBioAPI_FIR_FORM_TEXTENCODE;
inputFIR. InputFIR.TextFIR = &textFIR;

UCBioAPI_BOOL bResult;
err = UCBioAPl_Verify(m_hUCBioAPIl, &inputFIR, &bResult, NULL,
UCBioAPI_USE DEFAULT_TIMEOUT, NULL, NULL);

UCBiIOAPI_FreeTextFIR(&textFIR);

3.5.3. Releasing FIR memory
When the use of FIR is finished and it is no longer needed, memory must be released. The
method to release memory according to the type of FIR is shown here.

B FIR Handle
Memory is released using the UCBioAPI_FreeFIRHandle function.

B FIR (Full FIR)
Memory is released using the UCBioAPL FreeFIR function.

B Text encoded FIR
Memory is released using the UCBioAPI_FreeTextFIR function.

For a sample code to release memory in each case, refer to the sample codes used to describe
the use of FIR above.

3.5.4. Conversion of FIR

To store FIR or transmit it over the network, Handle must be converted to Full FIR or Text
encoded FIR. As the pointer is included inside the structure for both cases, it is necessary to
make appropriate conversion into stream type data for storage or transmission.

The next are examples of converting each data into stream type data according to the type of
FIR.

® FIR (Full FIR)

UCBioAPI_FIR fullFIR;
UCBiIoAPI_GetFIRFromHandle(hFIR, &FfullFIR);

Page 52 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UINT nHeaderLength = sizeof(fullFIR.Format) + fullFIR.Header.Length;
UINT nStreamLength = nHeaderLength + fullFIR.Header .DatalLength;
BYTE* pFIRStream = new BYTE [nStreamLength];
IT (pFIRStream) {
memset(pFIRStream, 0, nStreamLength);
memcpy (pFIRStream, &FullFIR, nHeaderlLength);
memcpy (pFIRStream+nHeaderLength, fullFIR.Data, FfullFIR.DatalLength);

}

it (pFIRStream)
delete[] pFIRStream;

B Text encoded FIR

UCBi10API_FIR_TEXTENCODE textFIR;
UCB10API_GetTextFIRFromHandle(hFIR, &textFIR, UCBioAPI_FALSE);

UINT nHeaderLength = sizeof(textFIR.IsWideChar);
UINT nStringLength strien(textFIR.TextFIR);
UINT nStreamLength = nHeaderLength + nStringLength + 1;
BYTE* pFIRStream = new BYTE [nStreamLength];
IT (pFIRStream) {
memset(pFIRStream, 0, nStreamLength);
memcpy(pFIRStream, &textFIR, nHeaderlLength);
memcpy (pFIRStream+nHeaderLength, textFIR.TextFIR, nStringlLength);

}

it (pFIRStream)
delete[] pFIRStream;

Page 53 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.6. Registering Fingerprint

To register fingerprint, a device must be opened first. In UCBioBSP SDK, registered fingerprint is
obtained in the form of FIR Handle. As the memory of FIR Handle is managed internally by BSP, FIR
management functions need to be used to obtain real fingerprint data from FIR Handle.

3.6.1. New fingerprint registration & Existing fingerprint modification

To register fingerprint, the UCBioAPIL_Enroll function is used. The fingerprint registration function
not only can make registration but also can modify already registered fingerprints. To modify a
fingerprint, assign an existing fingerprint to the second argument. To register a new fingerprint,
assign NULL to this value.

3.6.2. Payload designation

During fingerprint registration, Payload can be designated to insert specific data of a user after
the encryption into the inside of registered fingerprint data. Payload registered in this way can be
obtained only if fingerprint authentication is successful.

3.6.3. Example of use

In the next example, how to change to new Payload data while modifying the already registered
data can be found. More detailed examples can be found in the UCBioBSP_Demo folder in the
Samples folder in the installation folder after SDK installation.

H Example

UCBioAPI_FIR_HANDLE m_hEnrolledFIR

UCB10API_FIR_HANDLE hNewFIR;

UCBioAPI_INPUT_FIR inputFIR;
inputFIR.Form = UCBioAPI_FIR_FORM_HANDLE;
inputFIR. InputFIR.FIRINBSP = &m_hEnrolledFIR; // Existing FIR

UCBiOAPI_FIR_PAYLOAD payload;

payload.Length = (Istrlen(m_szPayload) + 1) * sizeof(TCHAR);
payload.Data = new UCBioAPI_UINT8 [payload.Length];
memset(payload.Data, 0, payload.Length);
Istrcpy((LPTSTR)payload.Data, m_szPayload);

UCBIOAPI_RETURN err = UCBioAPI_Enroll(m_hUCBioAPI, &inputFIR, &hNewFIR,
&payload, UCBioAPI_USE_DEFAULT_TIMEOUT, NULL, NULL);

Page 54 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

}

if (err == UCBioAPIERROR_NONE) {

UCBi0API_FreeFIRHandle(m_hEnrolledFIR);
m_hEnrolledFIR = hNewFIR; // Replace new FIR to existing FIR

iT (payload.Data)

delete[] payload.Data;

Page 55 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.7. Acquiring Fingerprint

To acquire fingerprint, a device must be opened first.

Fingerprint data are obtained through FIR Handle as in fingerprint registration but only one live
fingerprint is inputted unlike the fingerprint registration. (But, if the purpose of acquisition is set to
registration, it is processed in the same way as the fingerprint registration process.)

After comparing fingerprint data acquired in this way with previously registered fingerprint data,
fingerprint authentication can be performed.

3.7.1. Fingerprint acquisition
To acquire fingerprint, the UCBioAPI_Capture function is used. The purpose of acquisition can be
designated and values that can be used are shown here.

#define UCBioAPI_FIR_PURPOSE_VERIFY (0x01)
#define UCBioAPI_FIR_PURPOSE_IDENTIFY (0x02)
#define UCBioAPI_FIR_PURPOSE_ENROLL (0x03)

#define UCBioAPI_FIR_PURPOSE_ENROLL_FOR_VERIFICATION ONLY (0x04)
#define UCBioAPI_FIR_PURPOSE ENROLL_FOR_IDENTIFICATION_ ONLY (0x05)
#define UCBioAPI_FIR_PURPOSE_AUDIT (0x06)
#define UCBioAPI_FIR_PURPOSE_UPDATE (0x10)

If purpose is designated as registration, it has the same effect as calling the UCBioAPI_Enroll
function. A designated purpose is used only as reference, and it does not have any effect on
future authentication.

3.7.2. Example of use

B Example

UCBi0API_FIR_HANDLE hCapturedFIR
UCBioAPI_RETURN err = UCBioAPI_Capture(m_hUCBioAPI,
UCBi0oAPI_FIR_PURPOSE_VERIFY,
&hCapturedFIR,
UCBioAPI_USE_DEFAULT_TIMEOUT,
NULL, NULL);
it (err == UCBiIoAPIERROR_NONE) {
// Succeeded to capture FIR
} else {
// Failed to capture FIR

3

Page 56 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.8. Authenticating Fingerprint

It is not necessary to have a device to authenticate a fingerprint but a device must be opened first
for authentication with a live fingerprint.
Largely, the following two methods are used for fingerprint authentication.

3.8.1. Authenticating live fingerprint with registered fingerprint

It is a method of comparing already registered fingerprint data given as a input value with a
fingerprint entered from the current fingerprint recognition device in real time. Therefore, a
device must be opened during use.

The UCBIioAPI_Verify function is used.

B Example

UCBioAPI_FIR_HANDLE hEnrolledFIR;

UCB10oAPI_RETURN err = UCBioAPI_Enroll(m_hUCBioAPI,
NULL,
&hEnrol ledFIR,
NULL,
UCB10API_USE_DEFAULT_TIMEOUT,
NULL,
NULL) ;

UCBi1OAPI_INPUT_FIR inputFIR;
inputFIR.Form = UCBioAPI_FIR_FORM_HANDLE;
iNnputFIR. InputFIR.FIRINBSP = &hEnrolledFIR;

UCBiI0oAPI _BOOL bResult;
err = UCBioAPI_Verify(m_hUCBioAPI, &inputFIR, &bResult, NULL,
UCBiI0API_USE DEFAULT_TIMEOUT, NULL, NULL);

iT (err == UCBIOAPIERROR_NONE && bResult) {
// Succeeded to verify

} else {
// Failed to verify

}

3.8.2. Authenticating already acquired fingerprint with registered fingerprint
Already registered fingerprint data and already acquired fingerprint data are given as input
values and this method compares these two data. Therefore, it works without a device. It is a

Page 57 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

method used in authenticating fingerprint data transmitted to the server from the client.
The UCBIioAPI_VerifyMatch function is used.

B Example

UCBi10oAPI_FIR_HANDLE hEnrolledFIR;
UCBioAPI_RETURN err = UCBioAPI _Enroll(m_hUCBioAPI,
NULL,
&hEnrolledFIR,
NULL,
UCBioAPI_USE DEFAULT_ TIMEOUT,
NULL,
NULL);

UCBioAPI_FIR_HANDLE hCapturedFIR

UCBiI0oAPI_RETURN err = UCBioAPI_Capture(m_hUCBioOAPI,
UCBioAPI_FIR_PURPOSE_VERIFY,
&hCapturedFIR,
UCBioAPI_USE DEFAULT_ TIMEOUT,
NULL, NULL);

UCBi1oAPI_INPUT_FIR inputEnrolledFIR;
inputEnrolledFIR._Form = UCBioAPI_FIR_FORM_HANDLE;
inputEnrolledFIR. InputFIR.FIRINBSP = &hEnrolledFIR;

UCBi1oAPI_INPUT_FIR inputCapturedFIR;
inputCapturedFIR_Form = UCBioAPI_FIR_FORM_HANDLE;
inputCapturedFIR. InputFIR.FIRINBSP = &hCapturedFIR;

UCBi0API_BOOL bResult;

err = UCBioAPI_VerifyMatch(m_hUCBioAPI,
&inputEnrolledFIR, &inputCapturedFIR,
&bResult, NULL);

if (err == UCBIoAPIERROR_NONE && bResult) {
// Succeeded to verify

} else {
// Failed to verify

}

Page 58 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.8.3. Obtaining Payload data

When fingerprint authentication is successful, the Payload inserted during fingerprint registration
can be obtained. Because Payload data can be used as any data, they can be used to obtain a
specific fixed value during the user’s authentication. The next example is a code that obtains

Payload during authentication.

B Example

UCBioAPI_BOOL bResult;

UCBioAPI_FIR_PAYLOAD payload;

err = UCBioAPIl_VerifyMatch(m_hUCBioAPI,
&inputEnrolledFIR, &inputCapturedFIR,
&bResult, &payload);

iT (err == UCBIOAPIERROR_NONE && bResult) {
// Succeeded to verify
// Use payload data..

// Free payload data

UCBi0API_FreePayload(&payload);
} else {

// Failed to verify

}

Page 59 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.9. Using FastSearch (1:N Authentication)

UCBioBSP SDK provides FastSearch Engine for 1:N high-speed authentication. When authenticating
a large number of users, the repeated 1:1 authentication processes are not expected to result the
efficient authentication speed. Therefore, the authentication only for 1:N is required and the
function of authenticating 1 user out of a large number of users through FastSearch Engine is
provided. This chapter explains API for FastSearch. To use FastSearch, the UCBioAPI_FastSearch.h
file needs to be included.

3.9.1. Initialization and Termination

To initialize FastSearch Engine, the UCBioAPI_FastSearchEngine function needs to be called.

After this function is called, it enters a state to use FastSearch Engine.

When all works are completed, FastSearch Engine needs to be terminated. To terminate it, the
UCBioAPI_TerminateFastSearchEngine needs to be called.

H Example

#include “UCBioAPIl_FastSearch.h”

// Initialize FastSearch Engine
err = UCBioAPI_InitFastSearchEngine(m_hUCBioAPI);
if (err == UCBioAPIERROR_NONE) {

// Succeeded to initialize

// Terminate FastSearch Engine

UCBIOAPI_TerminateFastSearchEngine(m_hUCBioAPI);
} else {

// Failed to verify

3

3.9.2. Obtaining basic setting values & Setting new values

The basic setting value of FastSearch Engine can be obtained or a new value can be set.

The UCBioAPI_GetFastSearchInitinfo function is used to obtain the basic setting value and the
UCBioAPI_SetFastSearchInitinfo function is used to change values. For detailed information on
each setting value, refer to the function reference.

3.9.3. Creating DB
To perform 1:N authentication, a large number of DBs to perform authentication must be created
on memory first. For high-speed authentication, the authentication is performed after creating

Page 60 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

memory DB internally. Each FIR data needs to be combined into a single memory DB for the
authentication to do that. The UCBioAPI_AddFIRToFastSearchDB function creates a single memory
DB from entered FIR data or the FIR data registered at the user DB.

Also, FastSearch Engine does not use FIR as single data unit but uses a template unit as data unit
internally. Therefore, if several templates are included inside FIR, they can be added to DB
internally even though a single FIR is added to DB.

FIR data to be registered at DB and the user ID value for those data are passed as input values. If
1:N authentication is successful later, the user ID passed at this point can be obtained.

B Example

err = UCBioAPI_AddFIRToFastSearchDB(m_hUCBioAPI, &inputEnrolledFIR,
nUserID, NULL);
if (err == UCBioAPIERROR_NONE) {
// Succeeded to add FIR

} else {
// Failed to add FIR
s

3.9.4. Memory DB management
Various functions shown here are provided to manage the memory DB created for authentication.

B UCBioAPI_RemoveFpFromFastSearchDB
A specific fingerprint is deleted from the memory DB.

B UCBioAPI_RemoveUserFromFastSearchDB

All fingerprints of a specific user are deleted from the memory DB. As a large number of
fingerprints of a specific user may exist in the memory DB, this function is useful to delete
them altogether.

m UCBioAPI_ClearFastSearchDB
The entire memory DB is deleted.

B UCBioAPI_GetFpCountFromFastSearchDB
The number of fingerprints in the memory DB is obtained.

B UCBioAPI_GetFpInfoFromFastSearchDB
Fingerprint information at a specific location in the memory DB is obtained.

Page 61 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_CheckFpExistInFastSearchDB
It examines if specific fingerprint information exists in the memory DB.

B UCBioAPI_SaveFastSearchDBToFile
The entire memory DB is saved as a file. The DB saved in this way can be read using the
LoadFastSearchDBFromFile function.

B UCBioAPI_LoadFastSearchDBFromFile

The DB saved as a file is read back to the memory DB.

This method can create the memory DB much faster than building a new DB using the
UCBioAPI_AddFIRToFastSearchDB function.

For more detailed information on these functions, refer to the function reference. Detailed
examples of use can be found in the UCBioBSP_FastSearchDemo folder in the Samples folder
after SDK installation.

3.9.5. Authenticating 1:N

To authenticate the fingerprint of a specific user in the created memory fingerprint DB, the
UCBioAPI_IdentifyFIRFromFastSearchDB function is used.

A security level value for authentication can be set during authentication and the Callback
function that can obtain information at every authentication can be registered and used.

B Example
Callback Function portion

UCBioAPI_RETURN WINAPI MyFastSearchCallBack
(UCBi10API_FASTSEARCH_CALLBACK_PARAM_PTR_O pCallbackParamO,
UCBi10oAPI_VOID_PTR pUserParam)

MyInfo* pInfo = (MyInfo*)pUserParam;

if (pInfo->m_bStopFlag)

return UCBioAPI_FASTSEARCH_CALLBACK_STOP;
else

return UCBioAPI_FASTSEARCH_ CALLBACK_ OK;

Identify portion

Page 62 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBioAPI_FIR_HANDLE hFIR;
ret = UCBioAPI_Capture(m_hUCBioBSP, UCBioAPI_FIR_PURPOSE_IDENTIFY,
&hFIR, UCBioAPI_ USE_DEFAULT TIMEOUT, NULL, NULL);
if (ret == UCBioAPIERROR_NONE) {
UCBioAPI_FASTSEARCH_FP_INFO infoFp;

UCB1OAPI_INPUT_FIR inputFIR;
inputFIR._Form = UCBioAPI_FIR_FORM_HANDLE;
iNnputFIR. InputFIR_FIRINBSP = &hFIR;

UCBi10API_FASTSEARCH_CALLBACK_INFO_O callbackInfoO;
callbackInfoO.CallBackType = O;

cal lbackInfoO.CalIBackFunction = MyFastSearchCallBack;
callbackInfoO.UserCallBackParam = &mylnfo;

ret = UCBioAPI_ldentifyFIRFromFastSearchDB(pDlg->m_hUCBioBSP,
&inputFIR, 5, &infoFp, &callbackInfoO);

ifT (ret = UCBIOAPIERROR_NONE) {
if (ret == UCBioAPIERROR_FASTSEARCH_ IDENTIFY_STOP) {
// User stop!
} else {
// Failed to identify fingerprint data from DB!
by
} else {
// Succeeded to identify

}
UCBi0API_FreeFIRHandle(hFIR);

In the above example, whenever authentication occurs during performing Identify after
registering the Callback function, the Callback function along with the fingerprint information
currently in authentication is called. Using this Callback function, a user can display the current
state of progress and terminate the authentication in the middle of process.

When authentication is successful, the authenticated fingerprint information can be obtained
using the infoFp structure passed over as an argument. More detailed examples can be found in
the UCBioBSP_FastSearchDemo folder in the Samples folder after SDK installation.

Page 63 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.10. Converting FIR Data

As mentioned previously, FIR data are a collection of data consisting of a large number of template
data. Therefore, a conversion function needs to be used to obtain each template data
independently from FIR data or make one FIR data using a large number of template data.

Also for Audit FIR that contains image, raw images for each finger can be obtained using
conversion functions.

To use functions introduced in this chapter, the UCBioAPI_Export.h file must be included.

3.10.1. Extracting template data from FIR data

To extract template data from FIR data, the UCBioAPI FIRToTemplate function is used. This
function obtains template data as well as diversed FIR information. The memory for
UCBioAPI_EXPORT_DATA obtained this way must be released using the UCBioAPI_FreeExportData
function.

B Example

#include “UCBiIoAPI_Export.h”

UCBIOAPI_EXPORT_DATA exportData;
err = UCBioAPI_FIRToTemplate(m_hUCBioAPl, &inputFIR, &exportData,
UCBiIOAPI_TEMPLATE_TYPE_SI1ZE400) ;
it (err == UCBioAPIERROR_NONE) {
// Succeeded to export data

// Free export data

UCBI0OAPI_FreeExportData(&exportData);
} else {

// Failed to export data

3

3.10.2. Creating FIR Handle using template data
To create FIR Handle from template data, the next three functions can be used.

B UCBioAPI_TemplateToFIR
Unlike FIR, template data in general have only fingerprints specialized information but do not
have other information such as finger information. Therefore, when simply using template
data only for authentication after simple conversion to FIR Handle, this function is used. In
here, finger information or other related informations are not included internally in FIR.

Page 64 of 350

UNION COMMUNITY

Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_TemplateToFIREx
It is nearly identical to the UCBIioAPI_TemplateToFIR function and one FIR is created by
designating several templates in array. The size of each template must be the same and the
length is passed as an argument of the function.

UCBioAPI1_UI

UCBioAPI_FI

it (err ==

} else {

3

NT8 pMyTemplateData[400*2];

// Load template data to pMyTemplateData

R_HANDLE hNewFIR;

err = UCBioAPIl_TemplateToFIREx(m_hUCBioAPI, pMyTemplateData,

400*2, 400,
UCBioAPI_TEMPLATE_TYPE_SIZE400,
UCBioAPI_FIR_PURPOSE_VERIFY, &hNewFIR);

UCBi0APIERROR_NONE) {

// Succeeded to import data

// Failed to import data

B UCBioAPI_ImportDataToFIR
This is the function used when creating FIR after building all fingerprint information using
the UCBioAPI_EXPORT_DATA structure. Because accurate data values can be designated in
this case, a desired FIR Handle can be accurately created.

exportData.
exportData.
exportData.
exportData.
exportData.
exportData.
exportData.
exportData.
exportData.

UCBi0API1_EXPORT_DATA exportData;
memset(&exportData, 0, sizeof(UCBioAPI_EXPORT_DATA));

Length = sizeof(UCBioAPI_EXPORT_DATA);

TemplateType = UCBioAPI_TEMPLATE_TYPE_SIZE400;

FingerNum = fn;

DefaultFingerID = UCBioAPI_FINGER_ID _RIGHT_THUMB;
SamplesPerFinger = sn;

FingerInfo = new UCBioAPI_FINGER_BLOCK [fn];
FingerInfo[0].Length = sizeof(UCBioAPI_FINGER_BLOCK);
FingerInfo[O] -FingerID = UCBioAPI_FINGER_ID RIGHT_THUMB;
FingerInfo[0].Templatelnfo =new UCBioAPI_TEMPLATE_ BLOCK[sn];

Page 65 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

exportData.FingerInfo[0].Templatelnfo[0].Length = 400;
exportData.Fingerinfo[0].Templatelnfo[0].Data =new UCBioAPI_UINT8[400];
memcpy(exportData.FingerInfo[0].Templatelnfo[0].Data,

pMyTemplateData, 400);

UCBioAPI _FIR_HANDLE hNewFIR;
err = UCBioAPI_ImportDataToFIR(m_hUCBiIoAPI, &exportData,
UCBioAPI_FIR_PURPOSE_VERIFY, &hNewFIR);
it (err == UCBIoAPIERROR_NONE) {
// Succeeded to import data

// Free export data
iT (exportData.FingerInfo[0].Templatelnfo)
dellete[]exportData.FingerInfo[0].Templatelnfo;
iT (exportData.FingerInfo)
dellete exportData.Fingerinfo;
} else {
// Failed to import data
}

3.10.3. Conversion between template data

Conversion between template data in various types is done using the
UCBIioAPI_ConvertTemplateData function. The memory for data converted in this way must be
released using the UCBioAPI_FreeData function.

Values in below can be currently used for template types allowed for mutual conversion.

#define UCBioAPI_TEMPLATE_TYPE_SIZE400 (400)
#define UCBioAPI_TEMPLATE_TYPE_SIZES00 (800)
#define UCBioAPI_TEMPLATE_ TYPE_ SIZE320 (320)
#define UCBioAPI_TEMPLATE_TYPE_SIZE256 (256)
#define UCBioAPI_TEMPLATE TYPE_FMR €H)

3.10.4. Extracting raw image from Audit FIR data

Audit FIR is the FIR data that includes image information obtained as so-called Audit Data when
using the UCBioAPI Capture or UCBIioAPI_Enroll function. This Audit FIR has the identical
structure as the general FIRs but it includes an image internally unlike the general FIRs. To extract
a raw image from this Audit FIR data, the UCBioAPI_AuditFIRTolmage function is used.

The memory for UCBioAPI_EXPORT_AUDIT_DATA obtained this way must be released using the

Page 66 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBIioAPI_FreeExportAuditData function.

W Example

#include “UCBioAPI_Export.h”

UCBioAPI_EXPORT_AUDIT_DATA exportAuditData;
err = UCBioAPI_AuditFIRTolmage(m_hUCBioAPI, &inputFIR,
&exportAuditData);
it (err == UCBIoAPIERROR_NONE) {
// Succeeded to export audit data

// Free export audit data

UCBi10API_FreeExportAuditData(&exportAuditData);
} else {

// Failed to export audit data

3

3.10.5. Creating Audit FIR Handle using raw image
To create Audit FIR Handle using a raw image, the UCBioAPI_ImageToAuditFIR function is used.

Page 67 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.11. Setting UI
The methods to organize user interface used in UCBioBSP SDK are described here.

3.11.1. Loading skin file

The UCBIioBSP SDK skin type UI for the screen is in use for registration and authentication.
Therefore, if UL in other languages or other forms of Ul need to be used instead of the standard
Ul provided by UCBioBSP SDK, a user defined skin can be created and used. The function to read
the skin DLL created at this point is the UCBioAPI_SetSkinResource function.

The UCBioBSP SDK has a currently built-in skin in English as default. To change a skin in Korean,
follow the procedures shown here.

B Example

err = UCBioAPI_SetSkinResource(“UCBioBSPSkin_Kor.dll”);
it (err == UCBIoAPIERROR_NONE) {

// Succeeded to change to new skin
} else {

// Failed to change to new skin

3

To create a user defined skin, contact our company for assistance.

3.11.2. Changing UI property

The UCBIioBSP SDK provides the function that allows a user to change UI related property for use.
This function can be used by passing the UCBioAPI_ WINDOW_OPTION structure to the
UCBioAPI_Enroll function, UCBioAPI_Capture function or UCBioAPI_Verify function as an argument.

® UCBioAPI_WINDOW_OPTION
typedef struct ucbioapi_window option {

UCBiIOAPI_UINT32 Length;
UCBioAPI_WINDOW_STYLE WindowStyle;
UCBiOAPI_HWND ParentWnd;
UCBioAPI_HWND FingerWnd;
UCBioAPI_CALLBACK_INFO_O CaptureCallBacklInfo;
UCBioAPI_CALLBACK_INFO_1 FinishCal IBacklInfo;
UCBi10API_CHAR_PTR CaptionMsg;
UCBi0oAPI_CHAR_PTR CancelMsg;

UCBioAPI_WINDOW_OPTION_PTR 2 Option2;
} UCBioAPI_WINDOW_OPTION, *UCBioAPI_WINDOW_OPTION_PTR;

Page 68 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

typedef struct ucbioapi_window_option_2 {

UCBi0oAPI_UINT8 FPForeColor|[3];
UCBioAPI_UINTS8 FPBackColor[3];
UCBi0oAPI_UINT8 DisableFingerForEnrol1[10];
UCBi0oAPI_UINT32 Reservedl[4];
UCBiIoAPI_VOID_PTR Reserved?2;

} UCBioAPI_WINDOW_OPTION_2, *UCBioAPI_WINDOW_OPTION_PTR_2;
Descriptions on each structure member are shown here.

N Length
The length of the structure. Currently, it is the same as the value of sizeof
(UCBioAPI_WINDOW_OPTION).

B WindowsStyle
The type of displaying Window on the screen can be designated. It determines if a Window
is launched as a pop-up type or only a fingerprint is displayed in an area of another Window.
Other flag values can be designated and used. Allowed values are shown here.

#define UCBioAPI_WINDOW_STYLE_POPUP ')
#define UCBioAPI_WINDOW_STYLE_INVISIBLE D
#define UCBioAPI_WINDOW_STYLE_NO_FPIMG (0x00010000)
#define UCBioAPI_WINDOW_STYLE NO_WELCOME (0x00020000)
#define UCBioAPI_WINDOW_STYLE_NO_TOPMOST (0x00040000)

As the below three flags can be used repeatedly, the designation can be made using the OR
operator. For detailed descriptions on each flag, refer to the API reference.

H ParentWnd
Designating Handle of parent Window

B FingerWnd
When WindowsStyle is set as UCBioAPI_ WINDOW_STYLE_INVISIBLE, Handle of Window where
fingerprint image is drawn is designated. If a value is designated, the fingerprint image is
displayed in a designated Window and acquired later during fingerprint acquisition process,
and therefore a user defined acquisition Ul can be created.

B CaptureCallBackInfo
A Callback function to be called whenever capture occurs during fingerprint acquisition is

Page 69 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

designated.

m FinishCallBackInfo
A Callback function to be called just before Window is closed after the completion of job is
designated. Through the Callback designated here, some event information related to
fingerprint registration can be obtained during fingerprint registration.

B CaptionMsg
Contents to be displayed on the caption of the message box opened when the Cancel
button is pressed during fingerprint registration are designated.

B CancelMsg
Cancel announcement message contents of the message box opened when the Cancel
button is pressed during fingerprint registration are designated.

B Option2
In addition, other options can be given through the UCBioAPI_ WINDOW_OPTION_2 function.
Descriptions on the structure members are shown here. If any hasn’t set, NULL is designated.

4 FPForeColor
A color to be displayed for fingerprint on the screen can be designated.

¢ FPBackColor
When fingerprint is displayed on the screen, its background color can be designated.

€ DisableFingerForEnroll
During fingerprint registration, fingers not allowed for registration can be designated.

Detailed examples of use for each member value can be found in the UCBioBSP_UIDemo in the
Samples folder after UCBioBSP SDK installation.

3.11.3. Using Callback
Callback functions that can be designated to the UCBioAPI_ WINDOW_OPTION are described.

The definition of Callback functions allowed for use is shown here.

typedef struct ucbioapi_callback_info 0 {

UCBioAPI_UINT32 CallBackType;
UCBiIoAPI_WINDOW_CALLBACK O Cal lBackFunction;
UCBioAPI_VOID PTR UserCal IBackParam;

} UCBioAPI_CALLBACK_INFO_O, *UCBioAPI_CALLBACK_INFO_PTR_O:

Page 70 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

typedef struct ucbioapi_callback _info 1 {

UCBioAPI_UINT32
UCBioAPI_WINDOW_CALLBACK_1
UCBioAPI_VOID_PTR

CallBackType;
CallBackFunction;
UserCal IBackParam;

} UCBioAPI_CALLBACK_INFO_1, *UCBioAPI_CALLBACK_INFO_PTR 1;

W CallBackType
A type of the CallBackFunction is set. If this value is 0, the pointer to the
UCBioAPI_WINDOW_CALLBACK_PARAM_O structure is passed back as the first argument of
the Callback function. If this value is 1, the pointer to the UCBioAPI_WINDOW._-
CALLBACK_PARAM_1 structure is passed back. Currently, only two types (0 and 1) are
supported. Each of structures is shown here.

typedef struct ucbioapi_window_callback param 0 {

UCBIOAPI_UINT32
UCB10OAPI_UINT8*
UCBIOAPI_UINT32

UCBIOAPI_UINT32
UCBioAPI_VOID_PTR

dwQuality;
IpImageBuf;
dwDeviceError;

dwReserved[8];
IpReserved;

3 UCBioAPI_WINDOW_CALLBACK_PARAM_O;

typedef struct ucbioapi_window_callback param 1 {

UCBIOAPI _UINT32 dwResult;
UCBIOAPI _UINT32 dwStartTime;
UCBi0oAPI_UINT32 dwCapTime;
UCBIOAPI _UINT32 dwEndTime;
UCBi0oAPI_UINT32 Reserved[8];
UCBioAPI_VOID_PTR IpReserved;

} UCBioAPI_WINDOW_CALLBACK_PARAM_1;

The UCBioAPI_WINDOW_CALLBACK_PARAM_0O case is used for CaptureCallBackinfo of
UCBioAPI_WINDOW_OPTION and UCBioAPI_WINDOW_CALLBACK_PARAM_1 case is used for
FinishCallBackInfo. For detailed descriptions on each of members, refer to the API reference.

B CallBackFunction
.The Callback function to be called is designated. The definition of each function according
toCallBackType is shown here.

Page 71 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

typedef UCBioAPI_RETURN (WINAPI* UCBioAPI_WINDOW_CALLBACK_0O)
(UCBioAPI_WINDOW_CALLBACK_PARAM_PTR_0, UCBioAPI_VOID_PTR);

typedef UCBioAPI_RETURN (WINAPI* UCBioAPI_WINDOW_CALLBACK_1)
(UCBioAPI_WINDOW_CALLBACK_PARAM PTR_1, UCBioAPI_VOID_PTR);

The value designated at UserCallBackParam that is designated next is passed back as the
second argument.

m UserCallBackParam
The user value passed back as the second argument of the Callback function is designated.
3.11.4. Example of use

An example of an actual use is shown here.

B Example

UCBioAPI_WINDOW_OPTION winOption;
memset(&winOption, 0, sizeof(UCBioAPI_WINDOW _OPTION));

winOption.Length = sizeof(UCBioAPI_WINDOW_OPTION);
winOption.WindowStyle = UCBioAPI_WINDOW_STYLE_INVISIBLE;
winOption.ParentWnd = this;

winOption.FingerWnd = m_hwndFinger;

err = UCBioAPI_Capture(m_hUCBioAPI,
UCBioAPI_FIR_PURPOSE_VERIFY,
&hCapturedFIR,
UCBioAPI_USE_DEFAULT_TIMEOUT,
NULL,
&winOption);

More detailed examples of use can be found in the UCBioBSP_UIDemo in the Samples folder
after UCBioBSP SDK installation.

Page 72 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

3.12. Using the Smart Card

For a device supporting the smart card, UCBioBSP SDK provides a function to read and write onto
the smart card. To use the smart card, first a device must be set in a state of use through the
UCBioAPI_OpenDevice function and then functions related to the smart card are called.

How to use the smart card is described in this chapter. To use functions related to the smart card,
the UCBioAPI_SmartCard.h file needs to be included.

® Note — Among functions required to use the smart card, some of them may not be
supported depending on the firmware version of a device.

3.12.1. Outline of the smart card

All descriptions on the smart card can not be included in this document and detailed
descriptions can be found through relavent documents. Here, brief descriptions on the internal
structure and access rights of EEPROM of the Mifare card are given.

1) Structure of EEPROM

Byte Number within a Block
Sector | Block oJ1[2[3]|4]5]|6]7]|8]9]10]11]12]13]14]|15] [Description

15 Key A Access Bits Key B [Sector Trailer 15
Data
Data
Data
Key A Access Bits Key B Eector Trailer 14
Data
Data
Data

14

O = NOWO = N W

Key A Access Bits Key B Eector Traier 1
Data
Data
Data
Key A Access Bits Key B ector Trailer 0
Data

- N WO = N W)

Data

CB = byteD » byte1 Abyte2 * byte3

The above figure is that shows the EEPROM memory structure of a 1 Kbyte Mifare card.
As seen on the figure, EEPROM consists of 15 sectors (0~15) and each sector consists of 4 blocks

Page 73 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

(0~3). That is, since the size of a block is 16 bytes, each sector has a space of 64 bytes and 16 of
them make a space of 1 Kbyte in total.

16 Bytes X 4 Blocks X 16 Sectore = 1024 Bytes

The block 3 that is the fourth block of each sector has the key value for each sector and access
bits for access rights, and it is called the sector trailer. General data can not be stored in this
block and this value grants rights to read and write inside the sector.

2) Access Bits
4 bytes in the middle of the sector trailer are access bits that have the setting value for access
rights of the sector. Values for access bits are shown in the next figure.

Byte Number |0 | 1|2 [3 (4|56 |7 |8 |9|10]11[12[13[14[15

Key A Access Bits Key B (optienal)
Bt 7 6 5 4 3 2 1 0
Byte 6 ¢, | ¢ | T ¢ | °h Ch | ¢ | T
Byte 7 ct, ct, c1, ¢, C3, C3, ¢y, C3,
Byte 8 C3, C3, C3, C3, C2, c2, C2, C2,
Byte 9

From values of each of bits, values marked with lower index denote the location of block. That is,
3in C1; can be thought to represent the block 3. By this way, C1, C2 and C3 for block-by-block
can be obtained. Values with line on top are parity values and they can be thought to be NOT
value of each C1, C2 and C3.

Access rights to each of blocks can be designated using these C1, C2 and C3. The designation
method is divided into the sector trailer part (block 3) and data block (block 0~2) and their
meanings are shown in the next table.

Page 74 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B Access conditions for the sector trailer

Access bits Access condition for Remark
KEYA Access bits KEYB
Cl1 C2 C3 read write read write read write

O 0 0 never key A keyA never keyA key A Key B may be read

1] 1 0 never never key A never keyA never Key B may be read
1 0 0 never key B key never never key B

AlB
1 1 0 never never key never never never

AlB

0 0 1 never key A key A keyA keyA key A Key B may be read,
transport configuration

0 1 1 never key B key keyB never key B
AlB

1 0 1 never never key keyB never never
AlB

1 1 1 never never key never never never
AlB

B Access conditions for the data blocks

Access bits Access condition for Application
C1 C2 C3 read write increment decrement,

transfer,

restore
] 0 0 key A|BL1 key A|B1 key A|B1 key A|B1 transport

configuration

0 1 0 key A|BUI never never never read/write block
1 0 0 key A|BII key B' never never read/write block
1 1 0 key A|BUI key B’ key B? key A|B" value block
0 0 1 key A|BUI never never key A|BT value block
0 1 1 key B key B' never never read/write block
1 0 1 key B[never never never read/write block
1 1 1 never never never never read/write block
Access bits Access condition for Application

The meaning of each of values is shown here.

never : It can not be used with any method.

key A - It can be used if KeyA is known.

key B : It can be used if KeyB is known.

keyA|B : It can be used if KeyA or KeyB is known.

Page 75 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

For more detailed information on access bits, refer to Mifare related documents.

3) Value Block

If a data block is changed to a value block, that block is changed to a block that can store a 4
bytes value as shown in the below figure. This changed value block can be used in a special
purpose of increasing or decreasing the 4 bytes value written in the block by a fixed size. A value
block is recorded over 3 times due to data preservation and security reason.

ByteNumber [0 |1]2 |3 |4]5][6[7|8]9[10[11]12]13][14]15
Description Value Value Value Adr | Adr | Adr | Adr

To be used as a value block, C1, C2 and C3 value of access bits need to be set to 1, 1 and 0 or O,
0 and 1. UCBioBSP SDK provides a function called UCBioAPI_SD_PreValue for conversion to a
value block.

3.12.2. Switching on/off RF power of smart card

To use the smart card, first the RF power of the smart card reader needs to be turned on.
Through this way, reading and writing data from/to the smart card is possible. To turn on the RF
power, the UCBioAPI_SC_RFPowerOn function is called.

To terminate the use of the smart card, the UCBioAPI_SC_RFPowerOff function is called to turn off
the RF power of the reader.

The following can be used as an argument of the function. If UCBioAPI_SC_LED_TOGGLE is
designated, a success and failure of the function are represented by red and blue in the LED of
the smart card reader.

#define UCBioAPI_SC_LED TOGGLE D)
#define UCBioAPI_SC_LED NOT TOGGLE)

®m Example - 1

err = UCBioAPI_SC_RFPowerOn(m_hUCBioAPI, UCBioAPI_SC LED NOT_TOGGLE);
if (err == UCBioAPIERROR_NONE) {

// Succeeded to RFPowerOn
} else {

// Failed to RFPowerOn

3

B Example - 2

err = UCBioAPI_SC_RFPowerOff(m_hUCBioAPI, UCBioAPI_SC_LED NOT_TOGGLE);

Page 76 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

if (err == UCBIoAPIERROR_NONE) {
// Succeeded to RFPowerOff

} else {
// Failed to RFPowerOff

3

3.12.3. Reading serial number of smart card

Every smart card has a unique serial number. To read this value, the UCBioAPI_ReadSerial
function is used. Since this function has built-in UCBioAPI_RFPowerOn function, it is not

necessary to turn on the RF power and know the key value.

It is convenient to use simply in reading the serial number of the smart card.

B Example

BYTE pSerialBuffer[4]
WORD nSerialBufferLen = 4;

// Succeeded to read serial
} else {
// Failed to read serial

by

{0, 0, 0,0%};

err = UCBIoAPI_SC_ReadSerial (m_hUCBioAPI,
pSerialBuffer,
&nSerialBufferLen,
UCBioAPI_SC_LED_TOGGLE) ;
if (err == UCBioAPIERROR_NONE) {

3.12.4. Reading & Writing block value

To read the value of each block value written on EEPROM of the smart card and read, the RF
power must be turned on. To read a value, the UCBioAPL_SC_ReadBlock function is used. To write
a value, the UCBIioAPI_SC_WriteBlock function is used. The sector number and the block number
where reading and writing are desired are designated as arguments, and key values appropriate

for access rights of each block need to be passed.

An example of use is shown here.

B Example - 1

BYTE pResultBuffer[16];

BYTE pKeyValue[6];

WORD nResultBufferLen = sizeof(pResultBuffer);
memset(pResultBuffer, 0, sizeof(pResultBuffer));

Page 77 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

// Set key value to pKeyValue buffer

err = UCBioAPl_SC ReadBlock(m_hUCBioAPI,
UCBioAPI_SC_USE_KEY_A,
nSectorNum, nBlockNum,
pKeyValue,
pResultBuffer,
&nResultBufferlLen,
UCBiI0API_SC LED_TOGGLE);
if (err == UCBioAPIERROR_NONE) {
// Succeeded to read block
} else {
// Failed to read block

3

B Example - 2

BYTE pDataBuffer[16];
// Set data to pDataBuffer

BYTE pKeyValue[6];
// Set key value to pKeyValue buffer

err = UCBioAPIl_SC WriteBlock(m_hUCBioAPI,
UCBioAPI_SC_USE_KEY_A,
nSectorNum, nBlockNum,
pKeyValue,
pDataBuffer,
UCBioAPI_SC_LED_TOGGLE);

it (err == UCBIoOAPIERROR_NONE) {

// Succeeded to write block

} else {
// Failed to write block

3

For other functions related to the smart card, refer to the API reference.

Page 78 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.Programming by using COM

This chapter describes how to program using COM.
Since description is made using Visual Basic 6.0, other programming language users need to modify
them appropriately for each language before use.

4.1. Outline of COM Use

UCBioBSP SDK provides DLL for COM (Component Object Model) to support users of RAD (Rapid
Application Development) tool such as Visual Basic or Delphi and web development. Since DLL for
COM handles all the work internally using UCBioBSPdIl, UCBioBSPdIl must exist in the System32
folder of Windows before use.

COM does not support all functions provided by UCBioBSPdIl but convenience not provided by
UCBioBSPdIl can be provided by using features of COM. Therefore, a user can develop using
modules appropriate for needs.

4.1.1. Registration of COM

Because COM can be used after registration at the system registry, a process of registering the
COM module at the system is required by entering the following line at the command line
appeared after pressing [Windows key + R] button.

Regsvr32 UCBioBSPCOM.dII

After this process, the COM module can be used. If UCBioBSP SDK is installed, this process is
implemented during the installation and therefore a separate registration process is not
necessary.

Page 79 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.2. Initialization and Termination
How to initialize and terminate COM is described here.
4.2.1. Initializing
The COM module can be initialized by either declaring as a new object or using the CreateObject

function. These two methods produce the same result.

W Example - 1

Dim WithEvents objUCBioBSP As UCBioBSPCOMLib.UCBioBSP

" Create UCBiOBSP object
Set objUCBioBSP = New UCBioBSPCOMLib.UCBioBSP

To use this method, "UNION COMMUNITY — UCBioBSP SDK v3.00 Type Library” needs to be
included in usable reference items at “Reference” of Project Menu of Visual Basic before using
the UCBioBSPCOM object.

B Example - 2

Dim WithEvents objUCBioBSP As UCBi1oBSPCOMLib.UCBioBSP

" Create UCBIOBSP object
Set objUCBioBSP = CreateObject(“UCBioBSPCOMLib.UCBioBSP”)

4.2.2. Terminating

Because an object whose use is finished is released automatically, it is not necessary to notify the
termination of object use. However, it is necessary to clearly terminate it under a specific
language or environment and the procedure is shown in the following example.

B Example

" Free UCBIiOBSP object
Set objUCBi0oBSP = nothing

4.2.3. Lower interface declaration

7 lower interfaces exist for the COM module of UCBioBSP SDK. Lower interfaces can be obtained
from the main object and functions are classified according to each of unique functions. Each of
interfaces is shown here.

1) IDevice

Page 80 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

>)

Functions related to a device such as option setting of a device and opening/closing of a
device are implemented.

Dim objDevice As IDevice " Declaration Device object
Set objDevice = objUCBioBSP.Device

[Extraction
Functions related to fingerprint data extraction such as acquisition and registration of

fingerprint are implemented.

Dim objExtraction As IExtraction " Declaration Extraction object
Set objExtraction = objUCBioBSP._Extraction

IMatching
Functions related to fingerprint authentication are implemented.

Dim objMatching As IMatching " Declaration Matching object
Set objMatching = objUCBi0BSP.Matching

IFPData
Functions related to data such as conversion of fingerprint data are implemented.

Dim objFPData As IFPData " Declaration FPData object
Set objFPData = objUCBioBSP.FPData

IFPImage
Functions related to extraction and storage of fingerprint image are implemented.

Dim objFPImage As IFPImage " Declaration FPImage object
Set objFPImage = objUCBioBSP.FPImage

IFastSearch
Functions related to 1:N engine FastSearch are implemented.

Dim objFastSearch As IFastSearch " Declaration FastSearch object
Set objFastSearch = objUCBi0oBSP.FastSearch

ISmartCard
Functions related to the smart card are implemented.

Dim objSmartCard As ISmartCard " Declaration SmartCard object

Page 81 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Set objSmartCard = objUCBioBSP.SmartCard

For more detailed descriptions on each of lower interfaces, refer to the COM reference.

Page 82 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.3. Basic Setting

After successful COM initialization, the basic setting can be obtained or new values can be
designated before the use of SDK.

4.3.1. Obtaining SDK version
The BSP version of SDK currently in use can be obtained.

B Example

Set objUCBioBSP = New UCBioBSPCOMLib.UCBioBSP
" Check initialize object
IT objUCBioBSP.ErrorCode = O Then
" Get UCBIOBSP version
Caption = objUCBioBSP_MajorVersion & "." & objUCBioBSP._MinorVersion
End IFf

4.3.2. Obtaining basic setting values & Setting new values
The basic setting values of SDK can be obtained or new values can be set.

B Example

txtMaxFinger.Text = objUCBi0oBSP.MaxFingersForEnroll
txtNecessaryNum.Text = objUCBioBSP.NecessaryEnrol INum
txtSamplesPerFinger.Text = objUCBioBSP.SamplesPerFinger
txtDefaultTimeout.Text = objUCBioBSP.DefaultTimeout

txtEnrol 1SecuLevel . Text = objUCBioBSP.SecuritylLevelForEnroll
txtVerifySeculLevel .Text = objUCBioBSP.SecuritylLevelForVerify
txtldentifySecuLevel .Text = objUCBioBSP.SecurityLevelForldentify

B Example

objUCB10BSP _MaxFingersForEnroll = txtMaxFinger.Text
objUCBiI0BSP.NecessaryEnrol INum = txtNecessaryNum.Text
objUCBi10BSP.SamplesPerFinger = txtSamplesPerFinger.Text
objUCBi0oBSP.DefaultTimeout = txtDefaultTimeout.Text
objUCBi10BSP.SecurityLevelForEnroll = txtEnrollSeculLevel._Text
objUCBiI0BSP.SecuritylLevelForVerify = txtVerifySeculLevel.Text
objUCBiI0BSP.SecuritylLevelForldentify = txtldentifySeculLevel .Text

As the property of UCBioBSP object that is the main object, the following values can be used.

® MaxFignersForEnroll

Page 83 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

When registering fingerprint, the maximum number of fingers that can be registered is
designated. For example, if this value is set as 2, up to 2 fingers can be registered when
registering fingerprint using the Enroll method of IExtraction.

The default for this value is 10.

B NecessaryEnrolINum
When registering fingerprint, the minimum number of fingers that can be registered is
designated. This value must be less than or equal to the MaxFingersForEnroll value.
For example, if this value is set as 2, at least 2 fingers need to be registered to complete a
registration process when registering fingerprint using the Enroll method of IExtraction.
The default for this value is 1.

B SamplesPerFinger
During fingerprint registration, the number of samples to be stored per finger is designated.
Currently, it is fixed at 2 and modification is not allowed.

B DefaultTimeout
During fingerprint authentication and registration, the basic maximum time during which a
device operates to acquire a fingerprint is designated in ms unit. Timeout can be separately
designated later during function call but this value is used if -1 is designated here.
The default for this value is 10000 (10 seconds).

B SecurityLevelForEnroll / SecurityLevelForVerify / SecurityLevelForldentify
Authentication security level to be used for fingerprint registration / authentication / 1:N
authentication is set for each of them. This value can have values in below.

- LOWEST

- LOWER

- LOw

- BELOW_NORMAL
NORMAL

- ABOVE_NORMAL
- HIGH

- HIGHER

- HIGHEST

© 00 ~NO O~ WwWN P
|

By default, Enroll/Verify has the value of 5 and Identify has 6.

Page 84 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.4. Using Device

To register and acquire fingerprint, first a process of opening a fingerprint recognition device for
use is necessary. Here, functions required to use devices connected to the PC are described.

4.4.1. Obtaining device list
Before the use of a device, information such as the entire list and the total number of devices
currently connected to the PC can be obtained using the Enumerate method of IDevice.

B Example

Dim 1 As Integer

" Enumerate Device
Call objDevice.Enumerate

IT objUCBiIoBSP.ErrorCode <> 0 Then
comboDevice.Addltem "Auto Detect"
For 1 = O To objDevice.EnumCount - 1
nNamelD = objDevice.EnumDeviceNamelD(i)
IT nNamelD <> O Then
comboDevice.Addltem objDevice.EnumDeviceName(i)
End IT
Next i
End IT

After the Enumerate method of IDvevice is used, the total number of devices connected to the
system is stored at the EnumCount property of IDevice and information on various devices is

stored at several properties in array. After calling the Enumerate method, the types of property
obtained are shown here.

B EnumDevicelD

It includes the list of device ID. DevicelD is the addition value of DeviceNameID and
Devicelnstance.

B EnumDeviceNamelD
It includes the ID list for device names.

B EnumDevicelnstance
It includes the list for Instance numbers of devices. If several are connected to the same
device, the number of Instance increases. Currently, only 0 is supported.

Page 85 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B EnumDeviceDescription
It includes the list for descriptions of devices.

B EnumDeviceDI|
It includes the list for names of DLL files used by devices.

B EnumDeviceSys
It includes the list of names of Sys files used by devices.

B EnumDeviceAutoOn
It includes the list to show if devices support the AutoOn function.

B EnumDeviceBrightness / EnumDeviceContrast / EnumDeviceGain
It includes the list of brightness value / contrast value / gain value.

4.4.2. Opening device

Before the use of a device, a device to be used must be opened using the Open method of
IDevice. To open a specific device, set the ID of a device to be opened as an argument. To
automatically open the device used most recently, set 255 to the device ID. (&HFF is used in

Visual Basic.)
B Example
Dim objUCBioBSP As UCBioBSPCOMLib.UCBioBSP
Dim objDevice As IDevice " Declaration Device object

" Create UCBiOBSP object
Set objUCBioBSP = New UCBioBSPCOMLib.UCBioBSP
Set objDevice = objUCBioBSP.Device

" Open device
Call objDevice.Open(&HFF) “ &HFF = OxFF = 255 = Auto

IT objUCBIoBSP.ErrorCode = 0 Then
" Succeeded to open device
Else
" Failed to open device
End IFf

Values that are allowed to be used as device ID are shown here.

Page 86 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

- FOHO1
- FOMO1

- FOHO3

- HAM500
FOHO1A

- FOMO1A

- FPRO2

- FSHO1RF

- FOHO1RF
FR100
FPRO2LFD
FOHO1RFL
FSHO1SC
FPRO2_V30
AUTO DETECT

© 00N 0O WN P
|

ol
D wNRER O
(T T T

255

4.43. Closing device

After the use of a device is finished, the device must be terminated using the Close method of
IDevice. Here, the device opened the first must be closed.

Also, the device currently in use must be closed first to open a different device.

B Example

" Close Device if before opened
Call objDevice.Close(objDevice.OpenedDevicelD)

IT objUCBioBSP.ErrorCode = O Then
" Succeeded to close device
Else
" Failed to close device
End IFf

4.44. Obtaining device information
To obtain information on the device currently opened, values such as the size of image
supported by the device can be obtained using various properties of IDevice.

B Example

iDevicelD = &HFF

Page 87 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

" Open device
Call objDevice.Open(iDevicelD)

IT objUCBIoBSP.ErrorCode = 0 Then
txtWidth.Text = objDevice.ImageWidth(iDevicelD)
txtHeight.Text = objDevice. ImageHeight(iDevicelD)
End IFf

4.4.5. Setting fake fingerprint detection level for device
Basically it turn off fake fingerprint detection function in device. If it use this function, it can set

up fake fingerprint detection level before acquiring the fingerprint
B Example

" Set Live Detect Level
Call objDevice.SetLiveDetectLevel (1)

IT objUCBioBSP.ErrorCode = O Then

End If

Page 88 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.5. Understanding FIR Data

To register and authenticate fingerprints, understanding on FIR that is fingerprint data used by
UCBioBSP SDK is essential. The structure of fingerprint data was described in chapter 1, and things
to know to use FIR in real COM are described here.

4.5.1. The type of FIR
FIR used in COM can be classified into the next two types.

W Binary FIR
It is the value that includes encrypted binary memory block for fingerprint data. This value
can be obtained through the FIR property of IExtraction.

W String FIR
It is the encrypted character string type value for fingerprint data. This value can be obtained
through the TextFIR property of IExtraction.
Two types of data produce the same result but String FIR is easier to use because it consists of

character strings.

4.5.2. The use of FIR
To use FIR in functions such as authentication, just pass data in either Binary FIR or String FIR
regardless as an argument of the method.

Method of use for each of them according to type is shown here.

B Example

" Verify
IT radioBinaryFIR.Value Then

Call objMatching.Verify(binaryEnrolledFIR) * Verify with binary FIR
Else

Call objMatching.Verify(szTextEnrolledFIR) * Verify with String FIR
End IF

4.5.3. Releasing FIR memory
Because an object whose use is finished is released automatically in the COM module, it is not
necessary to release the memory of the object.

Page 89 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.6. Registering Fingerprint

To register a fingerprint, first a device must be opened.

To register a fingerprint in the COM module, the IExtraction interface must be used.

When a fingerprint is registered, fingerprint data are stored in the FIR or TextFIR property of
[Extraction.

4.6.1. New fingerprint registration & Existing fingerprint modification

To register a fingerprint, the Enroll function of IExtraction is used. The fingerprint registration
function can modify already registered fingerprints as well as register new fingerprints. To modify
a fingerprint, designate an existing fingerprint at the second argument. To register a new
fingerprint, set this value as NULL.

4.6.2. Payload designation

During fingerprint registration, Payload can be designated and then encrypted specific data of a
user can be inserted into the inside of fingerprint data. Payload registered this way can be
obtained only if authentication succeeds.

4.6.3. Example of use

The next example shows how to change to new Payload data while modifying already registered
data. More detailed examples can be found in the UCBioBSPCOM_DemoVB in the Samples folder
after SDK installation.

B Example

Dim binaryEnrolledFIR() As Byte
Dim szTextEnrolledFIR As String
Dim szPayload As String

" Get Payload
szPayload = txtPayload.Text

" Enroll
Call objExtraction.Enroll(szPayload, szTextEnrolledFIR)

IT objUCBioBSP.ErrorCode = O Then
* Get binary encoded FIR data
binaryEnrolledFIR = objExtraction.FIR

Page 90 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

" Get text encoded FIR data
szTextEnrolledFIR = objExtraction.TextFIR

""Succeeded to enroll.”

labelStatus.Caption
Else

labelStatus.Caption
End IT

"Failed to enroll."”

Page 91 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.7. Acquiring Fingerprint

To acquire a fingerprint, first a device must be opened.

To acquire a fingerprint in the COM module, the IExtraction interface must be used.

As in fingerprint registration, acquired fingerprint data are obtained in FIR. But unlike fingerprint
registration, only one live fingerprint is inputted.

By comparing fingerprint data acquired this way and previously registered fingerprint data,
fingerprint authentication is implemented.

4.7.1. Fingerprint acquisition
To acquire a fingerprint, the Capture method of IExtraction is used. A purpose of acquisition can
be designated and values that are allowed to be used are shown here.

- VERIFY

- IDENTIFY

- ENROLL
ENROLL_FOR_VERIFICATION_ONLY

- ENROOL_FOR_IDENTIFICATION_ONLY
- AUDIT

16 - UPDATE

O O~ WDN P
|

If a purpose of registration is designated, it has the same effect as calling the Enroll method.
A designated purpose is used only for reference and it does not have any effect on a future
authentication.

4.7.2. Example of use

B Example

Dim binaryEnrolledFIR() As Byte
Dim szTextEnrolledFIR As String

" Capture
Call objExtraction.Capture(l)

IT objUCBIoBSP.ErrorCode = 0 Then
" Get binary encoded FIR data
binaryEnrolledFIR = objExtraction.FIR

" Get text encoded FIR data
szTextEnrolledFIR = objExtraction.TextFIR

Page 92 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

labelStatus.Caption
Else

labelStatus.Caption
End IFf

""Succeeded to capture.™

"Failed to capture.™

Page 93 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.8. Authenticating Fingerprint

To authenticate a fingerprint in the COM module, the IMatching interface must be used.

It is not essential to have a device to authenticate a fingerprint but a device must be opened first

for authentication with a live fingerprint.
For fingerprint authentication, the next two methods are largely used.

4.8.1. Authentication live fingerprint wit registered fingerprint

This is a method of comparing a fingerprint entered in real time from the current fingerprint
recognition device with already registered fingerprint data given as input value. Therefore, a
device must be opened for use. To authenticate with this method, the Verify method of

IMatching is used.

B Example

" Verify
IT radioBinaryFIR.Value Then

Else

End If

IT objUCBioBSP.ErrorCode <> 0 Then
labStatus.Caption = "Verify Function Failed "
Exit Sub

End IT

" Check result of verify
IT objMatching.MatchingResult Then
" Check payload
IT objMatching.ExistPayload Then
labelStatus.Caption = objMatching.TextPayload
Else
labelStatus.Caption = "Verify Succeeded!™
End If
Else
" Show fail message.
labStatus.Caption = "Verify Failed!”
End IFf

Call objMatching.Verify(binaryEnrolledFIR) * Verify with binary FIR

Call objMatching.Verify(szTextEnrolledFIR) ~* Verify with String FIR

4.8.2. Authenticating already acquired fingerprint with registered fingerprint

Page 94 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Already registered fingerprint data and acquired fingerprint data are given as input values and
two data are compared. Therefore, this method works without a device. This is a method used at
the server for only authentication of fingerprint data transmitted from a client.

To authenticate with this method, the VerifyMatch method of IMatching is used.

B Example

Dim szTextEnrolledFIR As String
Dim szTextCapturedFIR As String

" Enroll
Call objExtraction.Enroll(Null, Null)

IT objUCBIoBSP.ErrorCode = 0 Then
" Get text encoded FIR data
szTextEnrolledFIR = objExtraction.TextFIR
End IFf

" Capture
Call objExtraction.Capture(l)

IT objUCBIoBSP.ErrorCode = 0 Then
" Get text encoded FIR data
szTextCapturedFIR = objExtraction.TextFIR
End IFf

" VerifyMatch
Call objMatching.VerifyMatch(szCapturedFIR, szTextEnrolledFIR)

IT objUCBiIoBSP.ErrorCode <> 0 Then
labStatus.Caption = "VerifyMatch Function Failed "
Exit Sub

End IFf

" Check result of verify
IT objMatching.MatchingResult Then
" Check payload
IT objMatching.ExistPayload Then
labelStatus.Caption = objMatching.TextPayload
Else
labelStatus.Caption = "Verify Succeeded!"
End IFf

Page 95 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Else

labStatus.Caption =
End IFf

" Show fail message.

“Verify Failed!™

4.8.3. Obtaining Payload data

When fingerprint authentication succeeds, Payload inserted during fingerprint registration can be
obtained. Since Payload data can be used as any type of data, they can be used to obtain a
specific fixed value during user authentication.

Page 96 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.9. Using FastSearch (1:N Authentication)

UCBioBSP SDK provides FastSearch Engine for 1:N high-speed authentication. When authenticating
a large number of users, an efficient authentication speed can not be expected simply through
repeated 1:1 authentications. Therefore, authentication only for 1:N is required and a function to
authenticate 1 user out of a large number of users is provided through FastSearch Engine. In the
COM module, the IFastSearch needs to be used to use FastSearch Engine.

49.1. Initialization and Termination

In the COM module, special initialization or termination is not required to use FastSearch Engine.
Simply obtaining the IFastSearch interface from the main object allows initialization to occur
internally to get ready for use.

B Example
Dim objUCBioBSP As UCBioBSPCOMLib.UCBioBSP
Dim objFastSearch As lFastSearch * Declaration FastSearch object

" Create UCBIOBSP object
Set objUCBioBSP = New UCBioBSPCOMLib.UCBioBSP
Set objFastSearch = objUCBioBSP.FastSearch

4.9.2. Obtaining basic setting values & Setting up new values
Basic setting values of FastSearch Engine can be obtained or new values can be set.
Properties used as basic setting values are listed here.

B MaxSearchTime
The maximum time to perform Identify is set. The unit is millisecond. Assume that the value
of 10,000 is set. If authentication is not completed after performing Identify for 10 seconds,
Identify terminates. If this value is set as 0, Identify is performed without time limit. The
default value is 0.

B UseGroupMatch
During performing authentication, if authentication is performed in group unit or not is
determined. If this value is set as 0, authentication is performed according to the order in DB.
If this value is set as 1, authentication in group unit is performed. The default value is 1.
It is recommended to set this value as 1 to perform authentication.

B MatchMethod

Page 97 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

A method to perform authentication is determined. If it is set as O, the authentication level
set up is used and authentication is immediately terminated when it goes over that level. If
this value is set as 1, it uses the highest point authentication method and it searches for the
value with the highest authentication level. The default value is 0. It is recommended to set
this value as 0 to perform authentication.

4.9.3. Creating DB

To perform 1:N authentication, first a large number of DBs to perform authentication must be
created on the memory. For high-speed authentication, authentication is performed by creating
the memory DB internally. Combining each of FIR data into one memory DB for authentication is
necessary to accomplish that. The AddFIR method of IFastSearch creates one memory DB from
the entered FIR data or the FIR data registered at the user DB.

Also, FastSearch Engine internally does not use FIR as a single data unit but uses template unit
as data unit. Therefore, if several templates are included inside FIR, internally several templates
can be added to DB even if one FIR is added to DB.

The FIR data to be registered at DB and the user ID value for that data are passed as input
values. When 1:N authentication succeeds later, the passed user ID value can be obtained.

B Example

Dim nUserlID As Long
Dim szFir As String

" Set User 1D
nUserlID = 1

" Get FIR data

Call objExtraction.Enroll(Null)

IT objUCBIoBSP.ErrorCode = 0 Then
szFir = objExtraction.TextFIR

" Regist FIR to FastSearch DB
Call objFastSearch.AddFIR(szFir, nUserlD)
IT objUCBioBSP._ErrorCode = 0 Then
MsgBox “Succeeded to add FIR to DB~
Else
MsgBox objUCBioBSP.ErrorDescription
End If
Else
MsgBox objUCBioBSP._ErrorDescription
End IFf

Page 98 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.9.4. Memory DB management
To manage created memory DB for authentication, various methods as shown here are provided.

B RemoveFp
One specific fingerprint is deleted from the memory DB.

B RemoveUser
All fingerprints of a specific user are deleted from the memory DB. Since several fingerprint
informations for a specific user can exist, this method is useful to delete them altogether.

m ClearDB
The entire memory DB is deleted.

N FpCount
The number of fingerprints in the memory DB is obtained.

m FpInfo
Fingerprint information at a specific location in the memory DB is obtained.

B AddedFpCount
The number of templates of the FIR added to DB just before is obtained.

®m AddedFplInfo
Template information of the FIR added to DB just before is obtained.

W IsFpExist
It examines if specific fingerprint information exists in the memory DB.

B SaveDBToFile
The entire memory DB is saved as a file. The DB saved this way can be read using the
LoadDBFromFile method.

B LoadDBFromfFile

The DB saved as a file is loaded to the memory DB again.

This way can create the memory DB much faster than building a new DB using the AddFIR
method.

4.9.5. Authenticating 1:N

Page 99 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

To authenticate a fingerprint of a specific user in the created memory fingerprint DB, the
IdentifyUser method of the IFastSearch interface is used.
During authentication, a security level value for authentication can be set.

B Example

Dim i1 As Integer

Dim szTextFIR As String

Dim Listltem As Listltem

Dim objMatchedFpInfo As ITemplatelnfo

" Set MaxTime for ldentifyUser
objFastSearch.MaxSearchTime = 5000 * Set Maxtime to 5 seconds.

nUserlID = 0
szTextFIR = "

" Get FIR data
Call objDevice.Open(&HFF) * OxFF : Auto detect to device ID
Call objExtraction.Capture(2) * 2 : Capture for identify purpose
IT objUCBIoBSP.ErrorCode = 0 Then

szTextFIR = objExtraction.TextFIR

" ldentify FIR to IndexSearch DB
Call objFastSearch.ldentifyUser(szTextFIR, 5)

IT objUCBiIoBSP.ErrorCode = 0 Then

Set objMatchedFplInfo = objFastSearch._MatchedFplnfo

IT objUCBiIoBSP.ErrorCode = O Then
" Add item to list of result
Set Listltem = ListResult._Listltems.Add
Listltem.Text = objMatchedFplInfo.UserlD
Listltem.Subltems(1) = objMatchedFpInfo.FingerlD
Listltem.Subltems(2) = objMatchedFplInfo.SampleNumber
Set Listltem = Nothing

End If
Else

MsgBox objUCBioBSP.ErrorDescription
End IT

Else
MsgBox objUCBioBSP._ErrorDescription

Page 100 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

End If

Call objDevice.Close(&HFF)

" OXFF : Auto detect to device ID

For detailed examples on FastSearch can be fond in the UCBioBSPCOM_FastSearchDemoVB in the

Samples folder after SDK installation.

Page 101 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.10. Converting FIR Data

As mentioned previously, FIR data are a collection of several template data. Therefore, to obtain
each of template data from FIR data or create one FIR data with several template data, the
conversion function is used.

Also, for Audit FIR that stores image, raw image for each of fingers can be obtained using provided
conversion functions.

To use conversion related functions in the COM module, the IFPData and IFPImage interfaces need
to be used.

4.10.1. Extracting template data from FIR data

To extract template data from FIR data, the Export method of IFPData is used.

When this method is called, not only template data but also various informations on FIR can be
obtained.

H Example

Dim biFIR() As Byte

Dim biTemplate() As Byte

Dim nTemplateType As Integer
nTemplateType = 400

objExtraction.Capture 1

" Get binary encoded FIR data
biFIR = objExtraction.FIR

" Export data
objFPData.Export biFIR, nTemplateType
IT objUCBioBSP.ErrorCode = O Then
" Get template data
nFingerlD = objFPData.FingeriD(0)
biTemplate = objFPData.FPData(nFingeriD, 0)
Else
" Failed to export data
End IF

4.10.2. Creating FIR using template data
To create FIR from template data, the Import method of IFData is used. To create one FIR that
includes several templates by calling the method several times, set the first argument as 0 and

Page 102 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

call the Import method as many times as desired.
If this value is set as 1, the data imported previously are deleted and a new FIR is created.

B Example

Dim biTemplate() As Byte

Dim nDataSize As Long

Dim nTemplateType As Integer
nTemplateType = 400

" Set template data to biTemplate buffer

Import data

objFPData. Import 1, nFingerlID, 1, nTemplateType, nDataSize, biTemplate
IT objUCBioBSP.ErrorCode = O Then

* Verify

objDevice.Open &HFF * Auto

objMatching.Verify objFPData.FIR

objDevice.Close &HFF

IT objMatching.MatchingResult Then
" Succeeded to verify!
Else
* Failed to verify!
End If
Else
" Failed to import data
End IT

4.10.3. Extracting raw image from Audit FIR data

Audit FIR is FIR data that include image information obtained when using the Capture or Enroll
method of the IExtraction interface. This Audit FIR has the identical structure as a general FIR but
a difference is that it includes image internally. To extract raw image from this Audit FIR data, the
Export method of IFPImage is used.

Also, raw image obtained this way can be saved as image file in various formats using method
such as the Save of IFPImage. Image formats allowed to be used are shown here.

~ RAW
- BMP
JPG
- WSQ

AW N PR
I

Page 103 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B Example

Dim nImgType As Integer
nimgType = 2 " BMP

objExtraction.Capture 1

" Export image data
objFPImage.Export
IT objUCBioBSP.ErrorCode = O Then
" Save iImage data to file
nFingerlID = objFPData.FingeriD(0)
objFPImage.Save szFileName, nlmgType, nFingerlD
Else
" Failed to export data
End IFf

Page 104 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.11. Setting UI

Methods to form user interfaces used in UCBioBSP SDK are described.
To set property related to Ul in the COM module, the main interface of UCBioBSPCOM is used.

4.11.1. Loading skin file

UCBioBSP SDK uses skin type Ul as the screen used for registration and authentication. Therefore,
to use Ul in other languages or other forms rather than the standard Ul provided by UCBioBSP
SDK, a user defined skin can be created and used. The method to load skin DLL created here is
SetSkinResource.

Currently, UCBioBSP SDK has the built-in skin in English as default. To change this to a skin in
Korean, follow the procedures below.

B Example

" Set skin resource
Call objUCBioBSP.SetSkinResource(szSkinFileName)
IT objUCBioBSP.ErrorCode = O Then
// Succeeded to change to new skin
Else
// Failed to change to new skin
End IFf

To create a user defined skin, contact our company.

4.11.2. Changing UI property
In UCBioBSP SDK, a function to allow a user to arbitrarily change and use UI related properties is
available. COM provides setting values as property and each of these values is shown here.

B WindowsStyle
The type of displaying a Window on the screen is designated. It determines if a Window is
launched as pop-up type or only a fingerprint is displayed in an area of another Window.

0 - POPUP
1 - INVISIBLE

B WindowOption
The flag of the type how Window displays on the screen can be designated. Settings such as
blocking display of a fingerprint on the screen or removing the Welcome page during
fingerprint registration can be made. Since these three flags can be used repeatedly,

Page 105 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

designation can be made using the OR operator.

0x00010000 — NO_FPIMG
0x00020000 — NO_WELCOME
0x00040000 — NO_TOPMOST

For detailed descriptions on each flag, refer to the API reference.

H ParentWnd
Designating Handle of parent Window

B FingerWnd
If WindowsStyle is set as INVISIBLE(1), Handle of Window where fingerprint image is drawn is
designated. If a value is designated here, fingerprint image is displayed on the designated
Window during future fingerprint acquisition and therefore a user defined acquisition Ul can
be created.

B CaptionMsg
When the Cancel button is pressed during fingerprint registration, contents to be displayed
in the Caption of the message box are designated.

B CancelMsg
When the Cancel button is pressed during fingerprint registration, the cancel announcement
message contents in the message box are designated.

B FPForeColor
.The color for a fingerprint to be displayed on the screen can be designated.

m FPBackColor
When a fingerprint is displayed on the screen, background color can be designated.

W DisableFingerForEnroll
During fingerprint registration, fingers to be prohibited from registration can be designated.

For detailed examples of each member value can be found in the UCBioBSPCOM_UIDemoVB in
the Samples folder after SDK installation.

4.11.3. Using Callback Event Handler
When declaring objects for COM, an event can be received from a COM object if WithEvents is
designated and declared as shown here.

Page 106 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

" Declaration global variables
Dim WithEvents objUCBioBSP As UCBioBSPCOMLib.UCBioBSP

Events that can be received are the Capture event called every time Capture is implemented and
the Enroll event called every time the Enroll method is implemented. Required values from each

of Event Handler can be obtained.

B Example

" Capture event handler
Private Sub objUCBiIoBSP_OnCapturekEvent(ByVal Quality As Long)

End Sub

" Enroll event handler
Private Sub objUCBioBSP_OnEnrol lEvent(ByVal EventlD As Long)

End Sub

For more detailed examples of use can be found in the UCBioBSP_UIDemo in the Samples folder
after UCBioBSP SDK installation.

Page 107 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.12. Using Smart Card

For devices that support the smart card, UCBioBSP SDK provides a function to read and write onto
the smart card. To use the smart card, first a device needs to be ready for use through the
[Device.Open method to call functions related to the smart card.

This chapter describes how to use the smart card. To use functions related to the smart card, the
ISmartCard interface is used.

® Note - Functions to use the smart card may have some methods not supported depending
on the firmware version of devices.

For the outline of the smart card, refer to descriptions in section 3.12.1.

4.12.1. Initialization and Termination

To use the smart card in the COM module, special initialization or termination is not required.
Getting the main object from the ISmartCard interface allows initialization to occur internally to
get ready for use.

B Example
Dim objUCBioBSP As UCBioBSPCOMLib.UCBioBSP
Dim objSmartCard As ISmartCard " Declaration SmartCard object

" Create UCBiOBSP object
Set objUCBioBSP = New UCBioBSPCOMLib.UCBioBSP
Set objSmartCard = objUCBioBSP.SmartCard

4.12.2. Switching on/off RF power of smart card

To use the smart card, first the RF power of the smart card reader must be switched on. Then,
reading and writing data onto the smart card is possible. To switch the RF power on, call the
RFPowerOn method of ISmartCard.

To end the use of the smart card, call the RFPowerOff method and switch off the RF power of the
reader.

If the LED property is set as 1, success/failure of the function is indicated as blue/red color in LED
of the smart card reader.

0 - LED_TOGGLE
1 - LED_NOT_TOGGLE

Page 108 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

W Example - 1

objSmartCard.LED 0
objSmartCard.RFPowerOn
IT objUCBioBSP.ErrorCode = O Then
" Succeeded to RFPowerOn
Else
* Failed to RFPowerOn
End IFf

" NOT Toggle LED

W Example - 2

objSmartCard.LED 0
objSmartCard.RFPowerOff
IT objUCBioBSP.ErrorCode = O Then
" Succeeded to RFPowerOff
Else
" Failed to RFPowerOff
End IT

" NOT Toggle LED

4.12.3. Reading serial number of smart card

Every smart card has a unique serial number. To read this value, the ReadSerial method is used.
Since this function has the built-in RFPowerOn function, it is not necessary to switch the RF
power on separately and know the key value. It is convenient when simply reading the serial
number. In the COM module, the serial number in either binary or long type can be obtained.
The two values are identical.

B Example

Dim serial() As Byte
Dim serialValue As Long

objSmartCard.ReadSerial

0 Then
read serial

IT objUCBioBSP.ErrorCode
" Succeeded to

serial = objSmartCard.ResultBuffer ~ binary type of serial
serialValue = objSmartCard.serial " value type of serial
Else
" Failed to read serial
End If

Page 109 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

4.12.4. Reading & Writing block value

To read and write the value of each block written on EEPROM of the smart card, the RF power
must be switched on. The ReadBlock method is used to read the value and the WriteBlock
method is used to write the value. Before calling the method, first the access rights of a block
and the key value appropriate for the rights are designated as property. The sector number and

block number where reading or writing is desired are designated as the arguments of each
method.

Examples of use are shown here.

B Example - 1

Dim blockData() As Byte
Dim key(6) As Byte
" Set key value to key array

objSmartCard.AuthMode = &H60 * 0Ox60 - Use Key A
objSmartCard.KeyA = key

nSectorNum = 0
nBlockNum = 0

objSmartCard.ReadBlock nSectorNum, nBlockNum

IT objUCBIoBSP.ErrorCode = 0 Then

" Succeeded to read block

blockData = objSmartCard.ResultBuffer
Else

" Failed to read block
End IFf

B Example - 2

Dim blockData(16) As Byte
Dim key(6) As Byte

" Set block data to blockData array
" Set key value to key array

objSmartCard.AuthMode = &H60 " 0x60 - Use Key A
objSmartCard.KeyA = key

nSectorNum = 0O

Page 110 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

nBlockNum = 0

objSmartCard.WriteBlock nSectorNum, nBlockNum, blockData
IT objUCBioBSP.ErrorCode = O Then
" Succeeded to write block
Else
" Failed to write block
End IFf

For descriptions on other functions related to the smart card, refer to API references.

Page 111 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.API Reference for DLL

This chapter describes types and APIs to use DLL module UCBioBSPdIl.

5.1. Type definitions

5.1.1. Basic types

Declaration is made in UCBioAPI_Basic.h and basic types are defined. Basic types are redefined
for development independent of OS or CPU. Descriptions in below are based on development
with C++ under standard Windows.

B UCBioAPI_SINT8 / UCBioAPI_SINT16 / UCBioAPI_SINT32
Signed 1byte / 2bytes / 4bytes value

B UCBioAPI_UINT8 / UCBioAPI_UINT16 / UCBioAPI_UINT32 / UCBioAPI_UINT64
Unsigned lbyte / 2bytes / 4bytes / 8bytes value

B UCBioAPI_SINT / UCBioAPI_UINT
Int / Unsigned int value varying according to OS. It operates with 4 bytes for 32 bit OS and 8
bytes for 64 bit OS.

® UCBioAPI_VOID_PTR
It means void*.

m UCBioAPI_BOOL
It can have UCBioAPI_FALSE(0) / UCBioAPI_TRUE(1) value. It is handled in the same way as int.

B UCBioAPI_CHAR / UCBioAPI_CHAR_PTR
It means char and char*. 1byte character and character string value.

m UCBioAPI_NULL
It means NULL. It is defined as ((void*)0).

m UCBioAPI HWND
HWND value that means Handle of Window.

Page 112 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.1.2. General types
Declaration is made in UCBioAPIL_Type.h and general types are defined.

®m UCBioAPI_FIR_VERSION
Prototype:
typedef UCBioAPI_UINT16 UCBioAPI_FIR_VERSION;
Description:

It represents FIR data version number.

®m UCBioAPI_VERSION

Prototype:

typedef struct ucbioapi_version {
UCBi0oAPI_UINT32 Major;
UCBiIOAPI_UINT32 Minor;

} UCBioAPI_VERSION, *UCBioAPI_VERSION_PTR;

Description:
The structure that includes BSP version number. If it is v3.1000, 3 is stored in major
position and 1000 is stored in minor position.

B UCBioAPI_FIR_DATA _TYPE
Prototype:
typedef UCBioAPI_UINT16 UCBioAPI_FIR_DATA_ TYPE;

Description:
It represents the data type of FIR. Allowed values are shown below. Each of these values
can be designated repeatedly through the OR operator.

#define UCBioAPI_FIR_DATA TYPE_RAW (0x00)
#define UCBioAPI_FIR_DATA TYPE_INTERMEDIATE (Ox01)
#define UCBioAPI_FIR_DATA TYPE_PROCESSED (0x02)
#define UCBioAPI_FIR_DATA TYPE_ENCRYPTED (0x10)

If FIR is created, it has generally the value of (0x12).

®m UCBioAPI_FIR_PURPOSE
Prototype:

Page 113 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

typedef UCBioAPI_UINT16 UCBioAPI_FIR_PURPOSE;

Description:
It represents the data purpose of FIR. Allowed values are shown below. This value is used
only for the reference of FIR data and it does not have any effect on authentication.

#define UCBioAPI_FIR_PURPOSE_VERIFY (0x01)
#define UCBioAPI_FIR_PURPOSE_IDENTIFY (0x02)
#define UCBioAPI_FIR_PURPOSE_ENROLL (0x03)

#define UCBioAPI_FIR_PURPOSE ENROLL_FOR_VERIFICATION ONLY (0x04)
#define UCBioAPI_FIR_PURPOSE_ENROLL_FOR_IDENTIFICATION_ONLY (0x05)
#define UCBioAPI_FIR_PURPOSE_AUDIT (0x06)
#define UCBioAPI_FIR_PURPOSE_UPDATE (0x10)

B UCBioAPI_FIR_QUALITY
Prototype:
typedef UCBioAPI_UINT16 UCBioAPI_FIR_QUALITY;

Description:
It represents the quality value of FIR. The range of allowed values is 0~100. The higher the
value is, the better quality of fingerprint data is.

B UCBioAPI_FIR_PRIVILEGE
Prototype:
typedef UCBioAPI_UINT16 UCBioAPI_FIR_PRIVILEGE;

Description:
It represents the data rights of FIR. Allowed values are shown below. This value is used
only for reference and it does not have any effect on authentication.

#define UCBioAPI_FIR_PRIVILEGE_NOT_USED ')
#define UCBioAPI_FIR_PRIVILEGE LOWEST D
#define UCBioAPI_FIR_PRIVILEGE_LOWER &)
#define UCBioAPI_FIR_PRIVILEGE_ LOW 3)
#define UCBioAPI_FIR_PRIVILEGE BELOW_NORMAL (4)
#define UCBioAPI_FIR_PRIVILEGE NORMAL (5)
#define UCBioAPI_FIR_PRIVILEGE_ABOVE_NORMAL (6)
#define UCBioAPI_FIR_PRIVILEGE HIGH €
#define UCBioAPI_FIR_PRIVILEGE_HIGHER)

Page 114 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

#define UCBIOAPI_FIR_PRIVILEGE_HIGHEST (©))

B UCBioAPI_FIR_DATE

Prototype:

typedef struct ucbioapi_fir_date {
UCBioAPI_UINT16 Year; // 0 =2000 /7 1 =2001 7/ ...
UCBiIOAPI_UINTS8 Month;
UCBioAPI_UINTS8 Day;

} UCBioAPI_FIR_DATE;

Description:

It is the structure that stores data date information of FIR. Since that value starting from
2000 is entered in Year, entering 8 is enough for year 2008. Used in the
UCBioAPI_FIR_OPTIONAL_DATA structure, it can be used for authentication when using the
UCBIioAPI_VerifyMatchEx function.

®m UCBioAPI_FIR_UUID_INFO

Prototype:

typedef struct ucbioapi_fir_ott_info {
UCBi0oAPI_UINT32 Index;
UCBIOAPI_UINTS8 UUID[16];

3 UCBioAPI_FIR_UUID_INFO, *UCBioAPI_FIR_UUID_INFO_PTR;

Description:

It is the structure that stores unique UUID (Universally Unique Identifier) information of FIR.
Generally it is not used. But used in UCBioAPI_FIR_OPTIONAL_DATA structure, it is used for
authentication when using the UCBioAPI_VerifyMatchEx function.

B UCBioAPI_OPTIONAL_DATA_TYPE
Prototype:
typedef UCBioAPI_UINT32 UCBioAPI_OPTIONAL_DATA_TYPE;

Description:

When authenticating using the UCBioAPI_VerifyMatchEx function, it is the type that
determines which of optional data is used as additional authentication data. It means each
of fields of the UCBioAPI_FIR_OPTIONAL_DATA structure. Each of values can be designated
repeatedly through the OR operator. Allowed values are shown below.

#define UCBioAPI_OPTIONAL_DATA TYPE_UUID (0x00000001)

Page 115 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

#define UCBioAPI_OPTIONAL_DATA TYPE_PIN1 (0x00000002)
#define UCBioAPI_OPTIONAL DATA TYPE_PIN2 (0x00000004)
#define UCBioAPI_OPTIONAL_DATA TYPE_ PRIVILEGE (0x00000008)
#define UCBioAPI_OPTIONAL DATA TYPE SITEID (0x00000010)
#define UCBioAPI_OPTIONAL_DATA TYPE_ISSUEDATE (0x00000020)
#define UCBioAPI_OPTIONAL_ DATA TYPE_ EXPIREDATE (0x00000040)
#define UCBioAPI_OPTIONAL_DATA TYPE_ ALL (OXFFFFFFfF)

B UCBioAPI_FIR_OPTIONAL_DATA

Prototype:

typedef struct ucbioapi_fir_optional_data {
UCBiI0API_UINT32 Length;
UCBiIoAPI_FIR_UUID_INFO UulDInfo;
UCBiI0API_UINT32 PIN1;
UCBiIOAPI_UINT32 PIN2;
UCBioAPI_UINT32 Privilege;
UCBiIOAPI_UINT32 SitelD;
UCBioAPI_FIR_DATE IssueDate;
UCBiIoAPI_FIR _DATE ExpireDate;
UCBiI0API_UINT32 Reserved;

} UCBioAPI_FIR_OPTIONAL_DATA, *UCBioAPI_FIR_OPTIONAL_DATA PTR;

Description:
When authenticating using the UCBioAPI_VerifyMatchEx function, it is the structure for
optional data used as additional data. Each of fields is described below.

Length:

As the length of the structure, it has the value of sizeof(UCBioAPI_FIR_OPTIONAL_DATA).
UUIDInfo:

Structure with UUID value of FIR. Refer to UCBioAPI_FIR_UUID_INFO description.

PIN1, PINZ:

Value that can split and store Personal Identification Number.

Privilege:

Authority value of FIR. If authority level is low during authentication, it is possible not to
allow authentication.

SitelD:

ID of the site where FR data are used is designated and its use can be allowed only in
specific sites.

IssueDate, ExporeDate:

Date of FIR creation and allowed dates for use can be designated.

Page 116 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Reserved:
Reserved area

m UCBioAPI_FIR_HEADER

Prototype:

typedef struct ucbioapi_Ffir_header {
UCBi0oAPI_UINT32 Length;
UCBiI0API_UINT32 Datalength;
UCBioAPI_FIR_VERSION Version;
UCBioAPI_FIR_DATA_TYPE DataType;
UCBiIoAPI_FIR_PURPOSE Purpose;
UCBiOAPI_FIR_QUALITY Quality;
UCBioAPI_FIR_OPTIONAL_DATA OptionalData;
UCBiI0API_UINT32 Reserved;

} UCBioAPI_FIR_HEADER, *UCBioAPI_FIR_HEADER_PTR;

Description:
It is the structure that stores header information of FR data. It is used in the UCBioAPL_FIR
structure. Each of fields is described below.

Length:

As the length of the structure, it has the value of sizeof(UCBioAPI_FIR_HEADER).
Datalength:

It has the value of the length that stores real FIR data.

Version:

It has FIR data version information. Refer to UCBioAPI_FIR_VERSION.
DataType:

It has the type of FIR data. Refer to UCBioAPI_FIR_DATA_TYPE.
Purpose:

It has the purpose of FIR data. Refer to UCBioAPI_FIR_PURPOSE.
Quality:

It has the quality value of FIR data. Refer to UCBioAPI_FIR_QUALITY.
OptionalData:

It is the structure that has the additional authentication information value of FIR data.
Refer to UCBioAPI_FIR_OPTIONAL_DATA.

Reserved:

Reserved area.

B UCBioAPI_FIR_DATA

Page 117 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Prototype:
typedef UCBioAPI_UINT8 UCBioAPI_FIR_DATA;

Description:
It represents the type of a real data block of FIR.

®m UCBioAPI_FIR_FORMAT
Prototype:
typedef UCBioAPI_UINT32 UCBioAPI_FIR_FORMAT;

Description:

It represents the data format of FIR. Allowed values are shown below. If the structure of FIR
data is changed later, this format value is changed to keep lower level compatibility.
Currently, only standard format is supported.

#define UCBioAPI_FIR_FORMAT STANDARD D)

m UCBioAPL_FIR
Prototype:
typedef struct ucbioapi_Fir {
UCBi0API_FIR_FORMAT Format;
UCBiIOAPI_FIR_HEADER Header;
UCBioAPI_FIR_DATA* Data;
} UCBioAPI_FIR, *UCBioAPI_FIR_PTR;

Description:
It is the structure that represents FIR data. It stores binary data of real FIR.

Format:

Data format of FIR. Refer to UCBioAPI_FIR_FORMAT.

Header:

Header that includes various informations of FIR. Refer to UCBioAPI_FIR_HEADER.

Data:

Binary block that includes real data of FIR. The length value of this data is recorded in
DatalLength of Header.

B UCBioAPI_FIR_PAYLOAD
Prototype:

Page 118 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

typedef struct ucbioapi_Fir_payload {
UCBioAPI_UINT32 Length;
UCBi0oAPI_UINT8* Data;

} UCBioAPI_FIR_PAYLOAD, *UCBioAPI_FIR_PAYLOAD PTR;

Description:

It is the structure that stores Payload information. During fingerprint registration, a specific
value of a user can be encrypted and inserted into the inside of FIR. That value can be
brought back and read later when user authentication succeeds. UCBioAPI_FIR_PAYLOAD is
the structure that stores that information. Since Payload data can be used as any data, it
can be used to obtain a specific fixed value during user authentication.

Length

The length of Payload data.
Data:

Real Payload data block.

B UCBioAPI_HANDLE / UCBioAPI_ HANDLE_PTR
Prototype:
typedef UCBioAPI_UINT UCBioAPI_HANDLE;
typedef UCBioAPI_UINT* UCBioAPI_HANDLE_PTR;

Description:
Various Handle values used in UCBioAPI are defined.
If no Handle value is available, UCBioAPI_INVALID_HANDLE(0) value is used.

#define UCBIOAPI_INVALID_HANDLE ((®))

B UCBioAPI_FIR_HANDLE / UCBioAPI_FIR_HANDLE_PTR
Prototype:
typedef UCBioAPI_UINT UCBioAPI_FIR_HANDLE;
typedef UCBioAPI_UINT* UCBioAPI_FIR_HANDLE PTR;

Description:
The Handle value of FIR data is defined.

B UCBioAPI_FIR_SECURITY_LEVEL
Prototype:

Page 119 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

typedef UCBioAPI_UINT32 UCBioAPI_FIR_SECURITY_LEVEL;

Description:
An authentication security level of FIR data is designated. Allowed values are shown below.

#define UCBioAPI_FIR_SECURITY_ LEVEL LOWEST €H)
#define UCBioAPI_FIR_SECURITY_LEVEL_ LOWER @)
#define UCBioAPI_FIR_SECURITY_LEVEL LOW 3)
#define UCBioAPI_FIR_SECURITY_LEVEL BELOW_NORMAL (4)
#define UCBioAPI_FIR_SECURITY_ LEVEL NORMAL)
#define UCBioAPI_FIR_SECURITY_LEVEL ABOVE NORMAL (6)
#define UCBioAPI_FIR_SECURITY_LEVEL HIGH @)
#define UCBioAPI_FIR_SECURITY_LEVEL HIGHER)
#define UCBioAPI_FIR_SECURITY_LEVEL HIGHEST 9

B UCBioAPI_TEMPLATE_FORMAT
Prototype:
typedef UCBioAPI_UINT32 UCBioAPI_TEMPLATE_FORMAT;

Description:
An Template format of FIR data is designated. Allowed values are shown below.

#define UCBioAPI_TEMPLATE_FORMAT UNION400)
#define UCBioAPI_TEMPLATE_FORMAT 150500 D)
#define UCBioAPI_TEMPLATE_FORMAT 150600)

W UCBioAPI_LIVE_DETECT_LEVEL
Prototype:
typedef UCBioAPI_UINT32 UCBioAPI_LIVE_DETECT_LEVEL;

Description:
An Live detect level of FIR data is designated. Allowed values are shown below

#define UCBioAPI_LIVE DETECT LEVEL NONE)
#define UCBioAPI_LIVE DETECT LEVEL TOUCH_ONLY)
#define UCBioAPI_LIVE DETECT LEVEL_LOW @)
#define UCBioAPI_LIVE DETECT LEVEL HIGH ©))
#define UCBioAPI_LIVE DETECT LEVEL HIGHEST ()

Page 120 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPLINIT_INFO_O

Prototype:

typedef struct ucbioapi_init_info 0 {
UCBi0oAPI_UINT32 StructureType;
UCBiI0API_UINT32 MaxFingersForEnroll;
UCBiI0API_UINT32 NecessaryEnrol INum;
UCBiI0API_UINT32 SamplesPerFinger;
UCBi0oAPI_UINT32 DefaultTimeout;

UCBioAPI_FIR_SECURITY_LEVEL SecurityLevelForEnroll;
UCBioAPI_FIR_SECURITY_LEVEL SecuritylLevelForVerify;
UCBioAPI_FIR_SECURITY_LEVEL SecuritylLevelForldentify;

UCBioAPI_TEMPLATE_FORMAT TemplateFormat;
UCBioAPI LIVE_DETECT LEVEL LiveDetectLevel;
UCBi0API_UINT32 Reservedl;
UCBIOAPI _UINT32 Reserved?2;

3 UCBioAPI_INIT_INFO_O, *UCBioAPI_INIT_INFO_PTR O;

Description:

It is the structure that stores the basic initial setting values of UCBioAPI SDK. Each of these
values is described below. It is used in the UCBioAPI_Getlnitinfo / UCBioAPI_SetlnitInfo
function.

StructureType:

Structure type. If an initial setting value is added later, an increment can be made as
structure 1, 2, .. Currently, only 0 is used.

MaxFingersForEnroll:

During registration, the maximum number of fingers allowed for registration is designated.
Here, if the designated number of fingers is registered, no more fingers can be registered.
The default value is 10.

NecessaryEnrolINum:

The minimum number of fingers to be registered during registration is designated. If this
value is set as 2, at least 2 fingers need to be registered to complete a fingerprint
registration process. Therefore, this value must be less than or equal to the
MaxFingersForEnroll value. The default value is 1.

SamplesPerFinger:

The number of samples per finger is designated. Currently, it is fixed at 2 and modification
is not allowed.

DefaultTimeout:

During fingerprint registration and authentication, the basic Timeout value for fingerprint
input waiting time is designated. The unit millisecond and set as 1,000 for 1 second. The

Page 121 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

default value is 10,000 (10 seconds).

SecuritylevelForEnroll / SecuritylevelForVerify / SecuritylevelForldentify:

The basic security level used in fingerprint registration and authentication is designated.
Refer to UCBioAPI_FIR_SECURITY_LEVEL. The basic value is used in the order of 5 /5 / 6.
TempateFormat:

An Template format of FIR data is designated.

The default value is UCBioAPI_TEMPLATE_FORMAT_UNION400.

Reservedl / Reserved2:

Reserved value.

m UCBioAPI_DEVICE_ID
Prototype:
typedef UCBioAPI_UINT16 UCBioAPI_DEVICE_ID;

Description:

The ID values of devices are defined. This value is 2 bytes. The upper 1 byte means
UCBioAPI_DEVICE_NAME that represents the type of each device and the lower 1 byte
represents the Instance value for each device. Allowed values are shown below. To use the
device used most recently from devices in the system, designate as AUTO(0x00ff).

#define UCBioAPI_DEVICE_ID_NONE (0x0000)
#define UCBioAPI_DEVICE_ID_AUTO (0x00FF)

®m UCBioAPI_DEVICE_NAME
Prototype:
typedef UCBioAPI_UINT8 UCBi0oAPI_DEVICE_NAME;

Description:
As the value used as the lower byte of UCBioAPI_DEVICE_ID, it represents the type of each
device. Allowed values are shown below. If devices are added later, this value will be

increased.

#define UCBioAPI_DEVICE_NAME_FOHO1 (0x01)
#define UCBiIoAPI_DEVICE NAME FOMO1 (0x02)
#define UCBioAPI_DEVICE_NAME_FOHO3 (0x03)
#define UCBiIoAPI_DEVICE NAME_ HAM500 (0x04)
#define UCBioAPI_DEVICE NAME FOHO1A (0x05)
#define UCBiIoAPI_DEVICE NAME FOMO1A (0x06)
#define UCBioAPI_DEVICE NAME_ FPRO2 (0x07)

Page 122 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

#define UCBioAPI_DEVICE_NAME_FSHO1RF (0x08)

#define UCBioAPI_DEVICE_NAME_FOHO1RF (0x09)

#define UCBioAPI_DEVICE_NAME_FR100 (0x0a) // 10
#define UCBioAPI_DEVICE_NAME_FPRO2LFD (0x0b) /7 11
#define UCBioAPI_DEVICE_NAME_FOHO1RFL (0x0c) /7 12
#define UCBioAPI_DEVICE_NAME_FSHO1SC (oxod) // 13
#define UCBioAPI_DEVICE_NAME_FPRO2_V30 (0x0e) /7 14

m UCBioAPI_DEVICE_INFO_O

Prototype:

typedef struct ucbioapi_device_info 0 {
UCBiI0API_UINT32 StructureType;
UCBiI0API_UINT32 ImageWidth;
UCBioAPI_UINT32 ImageHeight;
UCBi0API_UINT32 Brightness;
UCBiI0API_UINT32 Contrast;
UCBiIOAPI_UINT32 Gain;

} UCBioAPI_DEVICE_INFO_O, *UCBioAPI_DEVICE_INFO_PTR O;

Description:

The structure that stores the value on device information.

It is used in the UCBioAPI_GetDevicelnfo / UCBioAPI_SetDevicelnfo function. Each of these
values is described here.

StructureType:

Structure type. If an initial value is added later, an increment can be made as structure 1,
2, .. Only O is currently used.

ImageWidth / ImageHeight:

The size of image that can be obtained from a device. This value can be different from
device to device. This value can not be changed to read-only.
Brightness / Contrast / Gain:

The brightness / contrast / gain value of device can be obtained or designated. Currently,
only the value for gain is validly used, and values allowed for use are different according
to devices.

m UCBioAPI_DEVICE_INFO_EX

Prototype:
typedef struct ucbioapi_deviceinfoex {
UCBioAPI_DEVICE_ID NamelD;

Page 123 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBi0oAPI_UINT16 Instance;
UCBi0API_CHAR Name[64] ;
UCBi10API_CHAR Description[256];
UCBioAPI_CHAR DINI[64];
UCBiI0OAPI_CHAR Sys[64];
UCBiI0API_UINT32 Brightness;
UCBi0API_UINT32 Contrast;
UCBIOAPI_UINT32 Gain;
UCBiI0API_UINT32 Reserved[8];

} UCBioAPI_DEVICE_INFO_EX, *UCBioAPI_DEVICE_INFO_EX_PTR;

Description:

The structure that stores more detailed value on device information.

When obtaining the device list, the value contained in this structure is passed back in the
UCBioAPI_EnumerateDevice function. Each of values is described here.

NamelD:

The type of device is designated. Refer to UCBioAPI_DEVICE_ID.

Instance:

Device-by-device Instance value is designated. Refer to UCBioAPI_DEVICE_ID value.

Name:

The device names are stored in string type.

Description:

Descriptions on devices are stored in string type.

DIl / Sys:

Information on DLL, Sys files used by devices are stored.

Brightness / Contrast / Gain:

The brightness / contrast / gain value of a device can be obtained or designated. Currently,
only the value for gain is validly used, and values allowed for use are different according
to devices.

Reserved:

Reserved value.

B UCBioAPI_RETURN
Prototype:
typedef UCBioAPI_UINT32 UCBioAPI_RETURN;

Description:

Page 124 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Values returned by functions in UCBioAPI SDK are defined. In general, error values of
UCBioAPI SDK are included. For detailed error values, refer to the error definition.

B UCBioAPI_FIR_TEXTENCODE

Prototype:

typedef struct ucbioapi_Ffir_textencode {
UCBiIOAPI_BOOL IsWideChar;
UCBi0oAPI_CHAR_PTR TextFIR;

} UCBioAPI_FIR_TEXTENCODE, *UCBioAPI_FIR_TEXTENCODE_PTR;

Description:

The structure that stores values representing FIR data in text type. FIR data can be
represented in either binary type or text type and two types produce the same result. If it
is difficult to use binary type data, it is used to conveniently store FIR in text string type. It
can be obtained using a function such as UCBioAPI_GetTextFIRFromHandle.

IsWideChar:

It represents if TextFIR consists of Unicode 2 byte character string.
TextFIR:

Real FIR data are inserted in text string type.

B UCBioAPIL_INPUT_FIR_FORM
Prototype:
typedef UCBioAPI_UINT8 UCBioAPI_INPUT_FIR_FORM;

Description:

The type of structure used when passing FIR data as a function argument is defined. FIR
data can be used as three different types in total such as FIR Handle, Binary Text and Text
FIR and its type can be designated. Allowed values for use are shown below.

#define UCBioAPI_FIR_FORM_HANDLE (0x02)
#define UCBioAPI_FIR_FORM FULLFIR (0x03)
#define UCBioAPI_FIR_FORM_TEXTENCODE (0x04)

B UCBioAPI_INPUT_FIR
Prototype:
typedef struct ucbioapi_input_fir {
UCBi10oAPI_INPUT_FIR_FORM Form;

Page 125 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

union {
UCBi0oAPI_FIR_HANDLE_PTR FIRINBSP;
UCBioAPI_VOID_PTR FIR;
UCBi0API_FIR_TEXTENCODE_PTR TextFIR;

} InputFIR;
} UCBioAPI_INPUT_FIR, *UCBioAPI_INPUT_FIR_PTR;

Description:

The structure used when passing FIR data as a function argument. FIR data can be used as
three different types in total such as FIR Handle, Binary FIR and Text FIR. This structure is
used to represent them simultaneously as one input value.

Form:

The type of FIR data that this structure has is designated. Refer to
UCBioAPL_INPUT_FIR_FORM.

InputFIR:

The union structure that designate real FIR data. FIR Handle, Binary FIR and Text FIR values
are stored as one identical address pointer for use.

m UCBioAPI_WINDOW_CALLBACK_PARAM_0

Prototype:

typedef struct ucbioapi_window_callback param 0 {
UCBIOAPI _UINT32 dwQuality;
UCBioAPI_UINT8* IpImageBuf;
UCBIOAPI _UINT32 dwDeviceError;
UCBiI0API_UINT32 dwReserved[8];
UCBioAPI_VOID_PTR IpReserved;

} UCBioAPI_WINDOW_CALLBACK_ PARAM_O,
*UCBioAPI_WINDOW_CALLBACK_PARAM_PTR_O;

Description:
The structure passed as the first argument of the Callback function called during
fingerprint acquisition and authentication.

dwQuality:

It has the fingerprint quality value of the current image.
lpImageBuf:

It has the buffer pointer of the fingerprint image currently acquired.
dwbDeviceFrror:

Page 126 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

If there is an error value occurred from the current device, it has that value.
dwReserved / [pReserved:
Reserved value.

m UCBioAPI_WINDOW_CALLBACK_PARAM_1

Prototype:

typedef struct ucbioapi_window_callback param 1 {
UCBiI0API_UINT32 dwResult;
UCBiI0API_UINT32 dwStartTime;
UCBi10API_UINT32 dwCapTime;
UCBiI0API_UINT32 dwEndTime;
UCBiI0API_UINT32 Reserved[8];
UCBiIOAPI_VOID_PTR IpReserved;

} UCBioAPI_WINDOW_CALLBACK_PARAM 1,
*UCBioAPI_WINDOW_CALLBACK_PARAM_PTR_1;

Description:
The structure passed as the first argument of the Callback function called during
fingerprint registration and function termination.

dwResult:

During function termination, it stores the value to be returned by that function. Also, it can
have the value of an event occurred according to a registration process during fingerprint
registration. Each of values can store values defined in the error definition.

dwsStartTime / dwCapTime / dwEndTime:

During function termination, various time values can be found out. The time that a
function was called / The starting time of real fingerprint acquisition / The time that
acquisition was terminated are stored sequentially in order.

Reserved / [pReserved:

Reserved value.

® UCBioAPI_WINDOW _CALLBACK 0 / UCBioAPI WINDOW_CALLBACK 1
Prototype:
typedef UCBioAPI_RETURN (WINAPI* UCBioAPI_WINDOW_CALLBACK_0)
(UCBioAPI_WINDOW_CALLBACK_PARAM_PTR_O, UCBioAPI_VOID_PTR);

typedef UCBioAPI_RETURN (WINAPI* UCBioAPI_WINDOW_CALLBACK_1)

Page 127 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

(UCBioAPI_WINDOW_CALLBACK_PARAM_PTR_1, UCBioAPI_VOID_PTR);

Description:

Definition of the function pointer to the Callback function called during fingerprint
acquisition and registration.

Each of functions can be designated at CaptureCallBackinfo and FinishCallBackinfo of
UCBioAPI_WINDOW_OPTION. Information appropriate for each Callback function is passed
as the first argument and the value of the pointer that a user passes is passed as the
second argument.

The Callback function returns 0. If a value other than 0 is returned, the function currently
in use is terminated.

® UCBioAPI_CALLBACK INFO_0 / UCBioAPI_CALLBACK INFO_1

Prototype:

typedef struct ucbioapi_callback_info 0 {
UCBioAPI_UINT32 CallBackType;
UCBioAPI_WINDOW_CALLBACK O Cal lBackFunction;
UCBioAPI_VOID_PTR UserCal IBackParam;

} UCBioAPI_CALLBACK_INFO_O, *UCBioAPI_CALLBACK_INFO_PTR_O:

typedef struct ucbioapi_callback_info 1 {

UCBiI0oAPI_UINT32 CallBackType;
UCBioAPI_WINDOW_CALLBACK 1 Cal lBackFunction;
UCBioAPI_VOID PTR UserCal IBackParam;

} UCBioAPI_CALLBACK_INFO_1, *UCBioAPI_CALLBACK_INFO_PTR_1:

Description:
The structure to designate information on the Callback function to be called during
fingerprint acquisition.

CallBackType:

The type of the Callback function is designated. This value is always 0 in
UCBioAPI_CALLBACK_INFO_0 and 1 in UCBioAPI_CALLBACK_INFO_1.

CallBackFunction:

The function to be called as real Callback is designated.

UserCallBackParam:

The user argument to be passed as the second argument of the Callback function is
designated.

Page 128 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_WINDOW _STYLE
Prototype:
typedef UCBioAPI_UINT32 UCBioAPI_WINDOW_STYLE;

Description:

The Window style of the user interface used in fingerprint registration and authentication
is designated. This value is used in the UCBioAPI_WINDOW_OPTION structure. Allowed
values for use are shown below.

#define UCBioAPI_WINDOW_STYLE_POPUP ')
#define UCBioAPI_WINDOW_STYLE_INVISIBLE D
#define UCBioAPI_WINDOW_STYLE_NO_FPIMG (0x00010000)
#define UCBioAPI_WINDOW_STYLE NO_WELCOME (0x00020000)
#define UCBioAPI_WINDOW_STYLE_NO_TOPMOST (0x00040000)

UCBioAPI WINDOW STYLE_POPUP:

UCBioAPI WINDOW STYLE INVISIBLE:

If pop-up is designated, a new window is generally opened to perform fingerprint
registration and authentication. However, an invisible value can be designated for the
UCBioAPI_Capture and UCBioAPI Verify function and then fingerprint input or
authentication can be performed while not displaying Ul on the screen. Also, assuming
that the value of FingerWnd from values of the UCBioAPI_ WINDOW_OPTION structure is
not NULL, fingerprint image can be displayed on that Window when it is designated as
invisible.

3 styles in below are values that can be designated repeatedly using the OR operator. Each
of values has the following meaning.

UCBioAPI WINDOW STYLE_NO_FPIMG:

This style is designated not to display fingerprint image on the screen for security reason.
UCBioAPI WINDOW STYLE. NO WELCOME:

.The first page "Welcome Page’ is not displayed in the fingerprint registration UL
UCBioAPI WINDOW STYLE.NO TOPMOST:

Currently, all Uls are opened as the most upper Window. This style is designated to open
them as a standard Window.

B UCBioAPI_WINDOW_OPTION
Prototype:
typedef struct ucbioapi_window option {

Page 129 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBi0API_UINT32 Length;
UCBioAPI_WINDOW_STYLE WindowStyle;
UCBi0oAPI_HWND ParentWnd;
UCBi10API_HWND FingerWnd;
UCBioAPI_CALLBACK_INFO_O CaptureCal IBackInfo;
UCBi0oAPI_CALLBACK INFO_1 FinishCal IBackInfo;
UCBioAPI_CHAR_PTR CaptionMsg;
UCBioAPI_CHAR_PTR CancelMsg;

UCBioAPI_WINDOW_OPTION_PTR_2 Option2;
} UCBioAPI_WINDOW_OPTION, *UCBioAPI_WINDOW_OPTION_PTR;

Description:
The structure that designates various informations of a user interface used in fingerprint
registration and authentication. Each of values is described below.

Length:

The length of the structure. It has the value of sizeof(UCBioAPL WINDOW_OPTION).
WindowsStyle:

The value of UI Window style is designated. Refer to UCBioAPI_ WINDOW_STYLE.

The default value is UCBioAPI_WINDOW_STYLE_POPUP(0).

ParentWnd:

When the fingerprint registration and authentication Window opens, the Handle of the
parent Window that is the base of that Window is designated. The default value is NULL.
FingerWnd:

If the value of WindowStyle is UCBioAPI_ WINDOW_STYLE_INVISIBLE(1), the Handle of a
specific Window that draws fingerprint image is designated. The default value is NULL.
CaptureCallBackinfo:

The Callback function to be called at every fingerprint acquisition is designated. Refer to
UCBioAPI_CALLBACK_INFO_O.

FinishCallBackinfo:

The Callback function to be called at every fingerprint registration and function
termination is designated. Refer to UCBioAPI_CALLBACK_INFO_1.

CaptionMsg:

When a user selects Cancel during fingerprint registration, a message to be displayed in
Caption of Window to show the cancel message is designated. The default value is NULL.
CancelMsg:

When a user selects Cancel during fingerprint registration, a cancel message to be
displayed is designated. The default value is NULL.

Option2:

Additional Window option values are designated. Refer to UCBioAPI_WINDOW_OPTION_2

Page 130 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

for detailed values. The default value is NULL.

B UCBioAPI_WINDOW_OPTION_2

Prototype:

typedef struct ucbioapi_window_option_2 {
UCBioAPI_UINTS8 FPForeColor[3];
UCBi0oAPI_UINT8 FPBackColor[3];
UCBioAPI_UINT8 DisableFingerForEnrol1[10];
UCBi10API_UINT32 Reservedl[4];
UCBioAPI_VOID PTR Reserved?2;

} UCBioAPI_WINDOW_OPTION_2, *UCBioAPI_WINDOW_OPTION_PTR_2:

Description:
The structure that designates additional Window option values. Each of values is described
below.

FPForeColor:

The fingerprint color value of fingerprint image to be displayed on the screen is
designated as RGB value.

FPBackColor:

The fingerprint background value of fingerprint image to be displayed on the screen is
designated as RGB value.

DisableFingerForEnroll

During fingerprint registration, fingers prohibited for registration can be designated. As the
array value that can store 10 values in total, registration status of each finger value is
designated as 0 or 1.

It increases from index number 1 in the order of the thumb, index, middle, ring and little
of the right hand and increases from index number 6 in the order of the thumb, index,
middle, ring and little of the left hand. Index number 0 is not used.

For example, to prohibit the left thumb from registration, set as shown here.

DisableFingerForEnrol I[UCBioAPI_FINGER_ID_LEFT_THUMB] = 1;

But, in the fingerprint correction mode, registration status for a finger prohibited for use is
displayed if it is an already registered finger.

Reservedl / Reserved?2
Reserved value.

Page 131 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_TEMPLATE_TYPE
Prototype:
typedef UCBIOAPI_UINT32 UCBioAPI_TEMPLATE_TYPE;

Description:
When converting FR data into template data, allowed template type values are designated.
Allowed values are shown below. If an additional type becomes available, this value can be

added.

#define UCBiIoAPI_TEMPLATE TYPE_ SIZE400 (400)
#define UCBioAPI_TEMPLATE_TYPE_SIZE500 (500)
#define UCBIoAPI_TEMPLATE TYPE_ SIZE600 (600)
#define UCBioAPI_TEMPLATE_TYPE_SI1ZE800 (800)
#define UCBIoOAPI_TEMPLATE TYPE SIZE320 (320)
#define UCBioAPI_TEMPLATE_TYPE_SIZE256 (256)
#define UCBIOAPI_TEMPLATE_TYPE FMR (@D
#define UCBioAPI_TEMPLATE_TYPE_ANSI @)

SIZE400 / SIZE80O / SIZE320 / SIZE256 mean templates with the given size. If fingerprints
are stored in a limited storage space such as the smart card, data such as SIZE256 can be
used. (But, as size gets smaller, authentication rate is expected to decrease.)

FMR type is the standard data format for fingerprint data.

B UCBioAPI_FINGER_ID
Prototype:
typedet UCBioAPI_UINT8 UCBioAPI_FINGER_ID;

Description:
ID values of fingers are designated. Allowed values are shown below.

#define UCBioAPI_FINGER_ID_UNKNOWN ©)
#define UCBioAPI_FINGER_ID_RIGHT THUMB [€))
#define UCBioAPI_FINGER_ID_RIGHT_INDEX &)
#define UCBioAPI_FINGER_ID_RIGHT MIDDLE (©))
#define UCBioAPI_FINGER_ID_RIGHT RING 4
#define UCBioAPI_FINGER_ID_RIGHT LITTLE 5)
#define UCBioAPI_FINGER_ID_LEFT_THUMB (6)
#define UCBioAPI_FINGER_ID_LEFT_INDEX @)
#define UCBioAPI_FINGER_ID_LEFT_MIDDLE)
#define UCBioAPI_FINGER_ID_LEFT RING)

Page 132 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

#define UCBioAPI_FINGER ID_LEFT LITTLE (10)
#define UCBioAPI_FINGER_ID_MAX (11)

UCBioAPI_FINGER_ID_UNKNOWN is used when specific finger information is not known
during capture.

m UCBioAPI_MATCH_OPTION_0O

Prototype:

typedef struct ucbioapi_match_option_0 {
UCBi0oAPI_UINT8 StructureType;
UCBiIOAPI_UINTS8 NoMatchFinger[UCBioAPI_FINGER_ID_MAX];
UCBiI0API_UINT32 Reserved[8];

} UCBioAPI_MATCH_OPTION_O, *UCBioAPI_MATCH_OPTION_PTR_O;

Description:
The structure to store information used for detailed authentication in the
UCBIioAPI_VerifyMatchEx function.

StructureType:

Structure type. If initial setting values are added later, an increment can be made as
structure 1, 2, .. Only 0 is currently used.

NoMatchFinger:

ID of a finger not used in authentication can be designated. Even though all 10 fingers are
registered in FIR, this value is designated to exclude some fingers for authentication. Also,
some samples for each finger can be excluded for authentication.

The first sample is excluded if 1 is designated and the second sample is excluded if 2 is
designated. If 3 is designated, that finger is not used in authentication.

To exclude the first sample of the right thumb and the second sample of the left thumb,
follow the next procedure.

NoMatchFinger[UCBioAPI_FINGER_ID_RIGHT_THUMB] = 1;
NoMatchFinger[UCBioAPI_FINGER_ID_LEFT_THUMB] = 2;

Reserved:
Reserved value.

Page 133 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.1.3. Export/Import functions related types
Declaration is made in UCBioAPL ExportType.h and types related to data conversion such as
export and import are defined.

® UCBioAPI_TEMPLATE_BLOCK

Prototype:

typedef struct ucbioapi_template block {
UCBi0API_UINT32 Length;
UCBIOAPI_UINT8* Data;

} UCBioAPI_TEMPLATE_BLOCK, *UCBioAPI_TEMPLATE_BLOCK_PTR;

Description:
The structure to store 1 template information.

Length:

The length of data. Note that it is not the length of the structure unlike other structures.
Data:

Binary data block that stores template data. Stored data vary according to the
TemplateType value of the UCBioAPI_EXPORT_DATA structure.

B UCBioAPI_FINGER_BLOCK

Prototype:

typedef struct ucbioapi_finger_block {
UCBi0oAPI_UINT32 Length;
UCBioAPI_FINGER_ID FingerlD;

UCBioAPI_TEMPLATE_BLOCK_PTR Templatelnfo;
} UCBioAPI_FINGER_BLOCK, *UCBioAPI_FINGER_BLOCK_PTR;

Description:
The structure to store 1 finger information. Several template informations can be stored in
one finger.

Length:

The length of the structure. It has the value of sizeof(UCBioAPL_FINGER_BLOCK).

FingerlD:

It has the finger ID value. Refer to UCBioAPI_FINGER_ID.

Templatelnfo:

The structure array that stores template information.

To store a large number of template informations, UCBioAPI_TEMPLATE_BLOCK can exist in

Page 134 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

several arrays. The number of arrays is stored in the SamplesPerFinger value in the
UCBioAPI_EXPORT_DATA structure.

B UCBioAPI_EXPORT_DATA

Prototype:

typedef struct ucbioapi_export _data {
UCBIOAPI_UINT32 Length;
UCBioAPI_TEMPLATE_TYPE TemplateType;
UCBi0oAPI_UINT8 FingerNum;
UCBioAPI_FINGER_ID DefaultFingerlD;
UCBi0oAPI_UINT8 SamplesPerFinger;
UCBioAPI_UINT8 Reserved;

UCBioAPI_FINGER_BLOCK_PTR Fingerinfo;
} UCBioAPI_EXPORT_DATA, *UCBioAPI_EXPORT DATA PTR;

Description:
The structure to store template information for one FIR. Several finger informations can be
stored in one FIR.

Length:

The length of the structure. It has the value of sizeof(UCBioAPI_EXPORT_DATA).
TemplateType:

Data type of stored template. Refer to UCBioAPI_TEMPLATE_TYPE.

FingerNum:

The total number of fingers is designated. FingerInfo informations as many as the number
designated here are stored in array.

DefaultFingeriD:

The representative finger ID is designated.

SamplesPerFinger:

The number of templates per finger is designated. Templatelnfo informations in FingerInfo
information as many as the number designated here are stored in array.

Reserved:

Reserved area.

Fingerinfo:

The structure array that stores finger information.

To store a large number of finger informations, UCBioAPI_FINGER_BLOCK can exist in
several arrays. The number of arrays is stored in the FingerNum value.

B UCBioAPI_IMAGE_DATA

Page 135 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Prototype:

typedef struct ucbioapi_image data {
UCBi0API_UINT32 Length;
UCBIOAPI_UINT8* Data;

} UCBioAPI_IMAGE_DATA, *UCBioAPI_IMAGE_DATA PTR;

Description:
The structure to store one fingerprint image.

Length:

The length of the structure. It has the value of sizeof(UCBioAPI_IMAGE_DATA).

Data:

Binary data block that stores fingerprint image data. Image is stored as the image format
in raw type. The length of this data block is the same as the multiplication value between
the ImageWidth and ImageHeight value of the UCBioAPI_EXPORT_AUDIT_DATA structure.
That is, Length of Data = ImageWidth * ImageHeight.

m UCBioAPI_AUDIT_DATA

Prototype:

typedef struct ucbioapi_audit data {
UCBi0API_UINT32 Length;
UCBi0oAPI_UINT8 FingerlD;
UCBi0oAPI_IMAGE_DATA_PTR Image;

} UCBioAPI_AUDIT_DATA, *UCBioAPI_AUDIT DATA PTR;

Description:
The structure to store fingerprint image for one finger. Several fingerprint image
informations can be stored in one finger.

Length:

The length of the structure. It has the value of sizeof(UCBioAPI_AUDIT_DATA).

FingerlD:

It has the finger ID value. Refer to UCBioAPI_FINGER_ID.

Image:

The structure array that stores fingerprint image information.

To store a large number of fingerprint image informations, UCBioAPI_ IMAGE_DATA can
exist in several arrays. The number of arrays is stored in the SamplesPerFinger in the
UCBioAPI_EXPORT_AUDIT_DATA structure.

Page 136 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_EXPORT_AUDIT_DATA

Prototype:

typedef struct ucbioapi_export_audit data {
UCBi0oAPI_UINT32 Length;
UCBi0oAPI_UINT8 FingerNum;
UCBi0oAPI_UINT8 SamplesPerFinger;
UCBi0API_UINT32 ImageWidth;
UCBiI0API_UINT32 ImageHeight;
UCBioAPI_AUDIT_DATA_PTR AuditData;
UCBIOAPI _UINT32 Reserved;

} UCBioAPI_EXPORT_AUDIT_DATA, *UCBioAPI_EXPORT_ AUDIT_DATA PTR;

Description:
The structure to store fingerprint image information for one Audit FIR. Several finger
image informations can be stored in one Audit FIR.

Length:

The length of the structure. It has the value of sizeof(UCBioAPI_EXPORT_AUDIT_DATA).
FingerNum:

The total number of fingers is designated. AuditData informations as many as the number
designated are stored in array.

SamplesPerFinger:

The number of fingerprint images per finger is stored. Image informations in AuditData
information as many as the number designated here are stored in array.

ImageWidth / ImageHeight:

The size of image is designated.

AuditData:

The structure array that stores finger image information.

To store a large number of finger image informations, UCBioAPI_AUDIT_DATA can exist in
several arrays. The number of arrays is stored in the FingerNum value.

Reserved:

Reserved value.

Page 137 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.1.4. FastSearch functions related types
Declaration is made in UCBioAPI_FastSearchType.h and types related to FastSearch are defined.

B UCBioAPI_FASTSEARCH_INIT_INFO_0

Prototype:

typedef struct ucbioapi_fastsearch_init_info 0 {
UCBi10API_UINT32 StructureType;
UCBi0oAPI_UINT32 UseGroupMatch;
UCBIOAPI _UINT32 MatchMethod;
UCBi0API_UINT32 Researvedl;
UCBIOAPI _UINT32 Researved2;
UCBi0oAPI_UINT32 Researved3;
UCBIOAPI _UINT32 Researved4;
UCBiI0API_UINT32 Researved5;
UCBiIOAPI_UINT32* Researved6;

} UCBioAPI_FASTSEARCH_INIT_INFO_O,
*UCBioAPI_FASTSEARCH_INIT_INFO_PTR_O;

Description:

The structure that stores the basic initial setting value of FastSearch.

It is used in the UCBioAPI_GetFastSearchlnitinfo / UCBioAPI_SetFastSearchlnitinfo function.
Each of values is described below.

StructureType:

Structure type. If initial setting values are added later, an increment can be made as
structure 1, 2, .. Only O is currently used.

UseGroupMatch:

When performing authentication, decision is made if group unit authentication is
performed. Authentication is performed sequentially following the order in DB if this value
is 0 and group unit authentication is performed if this value is 1. The default value is 1.
MatchMethod:

The method to perform authentication is determined. If this value is 0, an authentication
level is set and authentication ends immediately when it goes over that level. If this value
is 1, the highest point authentication method is used and it is a method to find the value
with the highest authentication level. The default value is 0. It is recommended to set this
value as 0 for authentication.

Reservedl ~ Reservedé:

Reserved value.

Page 138 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_FASTSEARCH_INIT_INFO_0O

Prototype:

typedef struct ucbioapi_fastsearch_fp_info {
UCBiIOAPI_UINT32 ID;
UCBi0oAPI_UINT8 FingerlD;
UCBi0oAPI_UINT8 SampleNumber ;
UCBi0API_UINT32 Reservedl;
UCBIOAPI _UINT32 Reserved?2;

} UCBioAPI_FASTSEARCH_FP_INFO, *UCBioAPI_FASTSEARCH_FP_INFO_PTR;

Description:

The structure that stores authentication information for each template of FastSearch. When
authenticating with FastSearch, a value is stored in this structure and passed back. Each of
values is described below.

ID:

User ID value.

FingerlD:

Finger ID value.
SampleNumber:

Finger template number.
Reservedl / Reserved2:
Reserved value.

m UCBioAPI_FASTSEARCH_SAMPLE_INFO

Prototype:

typedef struct ucbioapi_fastsearch_sample_info {
UCBioAPI_UINT32 ID;
UCBi0oAPI_UINT8 SampleCount[11];

} UCBioAPI_FASTSEARCH_SAMPLE_INFO,
*UCBiOAPI_FASTSEARCH_SAMPLE_INFO_PTR;

Description:

When FIR is added to the FastSearch DB, information of each template stored in the added
FIR can be obtained. It is the structure that stores that information. It is used in the
UCBioAPI_AddFIRToFastSearchDB function.

ID:
User ID value.
SamplesCount:

Page 139 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

The number of templates for each finger is stored. It increases sequentially from index
number 1 in the order of thumb, index, middle, ring and little of the right hand and from
index number 6 in the order of thumb, index, middle, ring and little of the left hand. Index
number 0 is not used.

For example, to obtain the number of templates stored in the right hand thumb, follow
the next line.

int cnt = SampleCount[UCBioAP1_FINGER_ID RIGHT_THUMB];

B UCBioAPI_FASTSEARCH_CALLBACK_PARAM_0

Prototype:

typedef struct ucbioapi_fastsearch_callback param_0 {
UCBiI0API_UINT32 TotalCount;
UCBIOAPI _UINT32 Matchedlndex;
UCBiI0API_UINT32 MatchedScore;
UCBIOAPI _UINT32 Reservedl;
UCBiI0oAPI_UINT32 Reserved?2;
UCBIOAPI _UINT32 Reserved3;
UCBioAPI_VOID_PTR Reserved4;

} UCBioAPI_FASTSEARCH_CALLBACK_PARAM_O,
*UCBioAPI_FASTSEARCH_CALLBACK_PARAM_PTR_O;

Description:

It is the structure passed back as the first argument of the Callback function called at
every authentication during 1:N authentication through FastSearch. Various informations
are stored.

TotalCount:

The total number of fingerprints in the current DB.

MatchedIndex:

The index number of the fingerprint currently in authentication.
MatchedScore:

The authentication score of the fingerprint currently in authentication.
Reservedl ~ Reserved4:

Reserved value.

B UCBioAPI_FASTSEARCH_CALLBACK_ 0
Prototype:

Page 140 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

typedet UCBioAPI_RETURN (WINAPI* UCBioAPI_FASTSEARCH_CALLBACK_O0)
(UCBi0API_FASTSEARCH_CALLBACK_PARAM_PTR_0O, UCBioAPI_VOID_PTR);

Description:

When performing 1:N authentication through FastSearch, the function pointer to the
Callback function called at every authentication is defined.

This function can be designated as arguments of the
UCBioAPI_IdentifyFIRFromFastSearchDB function. Each
UCBioAPI_FASTSEARCH_CALLBACK_PARAM_0 structure information is passed back as the
first argument and the pointer value passed by a user is passed back as the second
argument.

The Callback function returns 0. If a value other than O is returned, 1:N authentication of
FastSearch in progress is terminated.

B UCBioAPI_FASTSEARCH_CALLBACK_INFO_0

Prototype:

typedef struct ucbioapi_fastsearch_callback_info 0 {
UCBioAPI_UINT32 Cal 1BackType;
UCBi10OAPI_FASTSEARCH_CALLBACK_O Cal IBackFunction;
UCBioAPI_VOID_PTR UserCal IBackParam;

} UCBioAPI_FASTSEARCH_CALLBACK_INFO_O,
*UCBioAPI_FASTSEARCH_CALLBACK_INFO_PTR_O;

Description:
The structure to store the Callback function of FastSearch.

CallBackType:

The type of the Callback function is designated. Currently, this value is always O.
CallBackFunction:

The function actually called with Callback is designated.

UserCallBackParam:

The user argument to be passed as the second argument of the Callback function is
designated.

Page 141 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.1.5. SmartCard functions related types
Declaration is made in UCBioAPI_SmartCardType.h and types related to the smart card are

defined.

m UCBioAPI_SC_USE_KEY_A / UCBioAPI_SC_USE_KEY_B

Prototype:

#define UCBioAPI _SC_USE_KEY A (0x60)

#define UCBioAPI_SC_USE_KEY_B (0x61)

Description:

The value used to designate which key between key A or key B from Mifare card keys is
used.

B UCBioAPI_SC_LED_TOGGLE / UCBioAPI_SC_LED_NOT_TOGGLE
Prototype:
#define UCBioAPI_SC_LED_TOGGLE (€D)
#define UCBioAPI_SC LED NOT_TOGGLE)

Description:

When using a function related to the smart card, it designates if the function
success/failure status of a device is displayed on LED or not. If UCBioAPI_SC_LED_TOGGLE
is set, a success of a smart card related function changes LED of a device into blue. In
other cases, it changes to red.

Page 142 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2. Error Definitions

Definition on various error values used in UCBioBSP SDK and those error values are described.
All error values are defined in the UCBioAPI_Error.h file.

5.2.1. Success
Definitions on error values used upon success.

B UCBioAPIERROR_NONE
Prototype:
#define UCBioAPIERROR_NONE)

Description:
The error value available upon success. This case represents a success of the function

rather than error.

Page 143 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2.2. General error definitions
They are definitions on general error values.
These error values start from the UCBioAPIERROR_BASE_GENERAL(0) value.

B UCBioAPIERROR_INVALID_HANDLE

Prototype:
#define UCBIOAPIERROR_INVALID_HANDLE (0x0001)

Description:
Wrong Handle value is used.

B UCBioAPIERROR_INVALID_POINTER

Prototype:
#define UCBIOAPIERROR_INVALID_POINTER (0x0002)

Description:
Wrong pointer value is used.

B UCBioAPIERROR_INVALID_TYPE

Prototype:
#define UCBIOAPIERROR_INVALID_TYPE (0x0003)

Description:
Wrong type value is used. It occurs when using StructureType not supported by a function

such as UCBioAPI_SetlnitInfo as a function argument.

B UCBioAPIERROR_FUNCTION_FAIL

Prototype:
#define UCBioAPIERROR_FUNCTION_FAIL (0x0004)

Description:
It occurs when a function execution fails due to an occurrence of a function internal error.

B UCBioAPIERROR_STRUCTTYPE_NOT_MATCHED

Prototype:
#define UCBioAPIERROR_STRUCTTYPE_NOT_MATCHED (0x0005)

Page 144 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:
A structure that does not match with StructureType is used. It occurs when a structure that

does not correspond to StructureType requested from a function such as
UCBioAPI_SetlnitInfo is used as an argument.

® UCBioAPIERROR_ALREADY_PROCESSED

Prototype:
#define UCBIOAPIERROR_ALREADY_PROCESSED (0x0006)

Description:
It occurs when FIR data that were entered in the UCBioAPI_Process function are already

processed data.

B UCBioAPIERROR_EXTRACTION_OPEN_FAIL

Prototype:
#define UCBioAPIERROR_EXTRACTION_OPEN_FAIL (0x0007)

Description:
A case which an error occurs when initializing Engine for extraction.

B UCBioAPIERROR_VERIFICATION_OPEN_FAIL

Prototype:
#define UCBioAPIERROR_VERIFICATION_OPEN_FAIL (0x0008)

Description:
A case which an error occurs when initializing Engine for authentication.

B UCBioAPIERROR_DATA_PROCESS_FAIL

Prototype:
#define UCBioAPIERROR_DATA_PROCESS_FAIL (0x0009)

Description:
An error occurs while extracting special features from fingerprint image data.

B UCBioAPIERROR_MUST_BE_PROCESSED_DATA
Prototype:

Page 145 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

#define UCBIOAPIERROR_MUST_BE_PROCESSED_DATA (0x000a)

Description:
It occurs when data that have not been processed are entered into a function requiring
special feature data input.

B UCBioAPIERROR_INTERNAL_CHECKSUM_FAIL
Prototype:
#define UCBioAPIERROR_INTERNAL_CHECKSUM_FAIL (0x000b)

Description:
Internal validity error of FIR data. It occurs generally when data were changed arbitrarily or
damaged FIR data were used.

B UCBioAPIERROR_ENCRYPTED_DATA_ERROR
Prototype:
#define UCBIOAPIERROR_ENCRYPTED_DATA_ERROR (0x000c)

Description:
Encryption error of FIR data. It occurs generally when data were arbitrarily changed or
encrypted data can not be recovered due to the use of damaged FIR data.

B UCBioAPIERROR_UNKNOWN_FORMAT
Prototype:
#define UCBioAPIERROR_UNKNOWN_FORMAT (0x000d)

Description:
Unknown FIR format.

® UCBioAPIERROR_UNKNOWN_VERSION
Prototype:
#define UCBioAPIERROR_UNKNOWN_VERSION (0x000€)

Description:
Unknown FIR version.

Page 146 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPIERROR_VALIDITY_FAIL

Prototype:
#define UCBIOAPIERROR_VALIDITY_FAIL (0Ox000T)

Description:
Validity error of the UCBioBSPdIl module. It occurs generally when DLL is arbitrarily

changed or unsigned DLL is used.
In UCBioBSP SDK, DLL itself examines its validity to check if modification occurs. If DLL is

modified even as small as 1 byte from outside, this error occurs and SDK does not work.

B UCBioAPIERROR_INVALID_TEMPLATESIZE

Prototype:
#define UCBioAPIERROR_INVALID_TEMPLATESIZE (0x0010)

Description:
It occurs when the size of entered template is wrong during the use of the mutual
conversion function between FIR data and template data.

B UCBioAPIERROR_INVALID_TEMPLATE

Prototype:
#define UCBIOAPIERROR_INVALID_TEMPLATE (0x0011)

Description:
A case which wrong template data were used.

B UCBioAPIERROR_EXPIRED_VERSION

Prototype:
#define UCBIOAPIERROR_EXPIRED_VERSION (0x0012)

Description:
It occurs when the valid period of the evaluation version is over during the use of the

evaluation version of UCBioBSP SDK.

B UCBioAPIERROR_INVALID_SAMPLESPERFINGER

Prototype:
#define UCBioAPIERROR_INVALID_SAMPLESPERFINGER (0x0013)

Page 147 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:
It occurs when the number of templates per finger is incorrectly designated.

B UCBioAPIERROR_UNKNOWN_INPUTFORMAT

Prototype:
#define UCBiIoAPIERROR_UNKNOWN_INPUTFORMAT (0x0014)

Description:
It occurs when the format used as the UCBIioAPIINPUT FIR structure is an unknown

format.

B UCBioAPIERROR_INVALID_PARAMETER

Prototype:
#define UCBioAPIERROR_INVALID_PARAMETER (0x0015)

Description:
It occurs when a function argument is used or a function argument value over the limit is
used.

B UCBioAPIERROR_FUNCTION_NOT_SUPPORTED

Prototype:
#define UCBIOAPIERROR_FUNCTION_NOT_SUPPORTED (0x0016)

Description:
Unsupported function.

Page 148 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2.3. Initialization related error definitions
They are definitions on error values related to initialization setting value.
These error values start from the UCBioAPIERROR_BASE_INIT(0x0100) value.

B UCBioAPIERROR_INIT_MAXFINGERSFORENROLL

Prototype:
#define UCBIOAPIERROR_INIT_MAXFINGERSFORENROLL (0x0101)

Description:
A wrong value was designated at the MaxFingersForEnroll value of UCBioAPI_INIT_INFO_O.

B UCBioAPIERROR_INIT_NECESSARYENROLLNUM

Prototype:
#define UCBIOAPIERROR_INIT_NECESSARYENROLLNUM (0x0102)

Description:
A wrong value was designated at the NecessaryEnrolINum value of UCBioAPI_INIT_INFO_O.

B UCBioAPIERROR_INIT_SAMPLESPERFINGER

Prototype:
#define UCBIOAPIERROR_INIT_SAMPLESPERFINGER (0x0103)

Description:
A wrong value was designated at the SamplesPerFinger value of UCBioAPL_INIT_INFO_O.

B UCBioAPIERROR_INIT_SECULEVELFORENROLL
B UCBioAPIERROR_INIT_SECULEVELFORVERIFY
B UCBioAPIERROR_INIT_SECULEVELFORIDENTIFY

Prototype:

#define UCBiIOAPIERROR_INIT SECULEVELFORENROLL (0x0104)
#define UCBIOAPIERROR_INIT_SECULEVELFORVERIFY (0x0105)
#define UCBiOAPIERROR_INIT_SECULEVELFORIDENTIFY (0x0106)
Description:

A wrong value was designated at the SecuritylLevelForEnroll / SecuritylLevelForVerify /
SecurityLevelForldentify value of UCBioAPI_INIT_INFO_O.

Page 149 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2.4. Device related error definitions
They are definitions on error values related to devices.
These error values start from the UCBioAPIERROR_BASE_DEVICE(0x0200) value.

B UCBioAPIERROR_DEVICE_OPEN_FAIL
Prototype:
#define UCBIOAPIERROR_DEVICE_OPEN_FAIL (0x0201)

Description:
Device initialization failure. It occurs when a device is not available or the device driver is
not installed.

B UCBioAPIERROR_INVALID_DEVICE_ID
Prototype:
#define UCBioAPIERROR_INVALID_DEVICE_ID (0x0202)

Description:
It occurs when initializing a device using a wrong device ID.

® UCBioAPIERROR_WRONG_DEVICE_ID
Prototype:
#define UCBioAPIERROR_WRONG_DEVICE_ID (0x0203)

Description:
The ID of a device different from the currently initialized device is used.

B UCBioAPIERROR_DEVICE_ALREADY_OPENED
Prototype:
#define UCBioAPIERROR_DEVICE_ALREADY_OPENED (0x0204)

Description:
A device is already open. It occurs when initializing a device twice.

B UCBioAPIERROR_DEVICE_NOT_OPENED
Prototype:
#define UCBioAPIERROR_DEVICE_NOT_OPENED (0x0205)

Page 150 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:
It occurs to try to use a device related function without initializing a device.

B UCBioAPIERROR_DEVICE_BRIGHTNESS
B UCBioAPIERROR_DEVICE_CONTRAST
B UCBioAPIERROR_DEVICE_GAIN

Prototype:

#define UCBioAPIERROR_DEVICE BRIGHTNESS (0x0206)
#define UCBiOAPIERROR_DEVICE_CONTRAST (0x0207)
#define UCBioAPIERROR_DEVICE_GAIN (0x0208)
Description:

Wrong device setting values for each of brightness / contrast / gain value are used,
respectively.

Page 151 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2.5. User interface related error definitions
They are definitions on error values related to UL
These error values start from the UCBioAPIERROR_BASE_UI(0x0300) value.

B UCBioAPIERROR_USER_CANCEL
Prototype:
#define UCBioAPIERROR_USER_CANCEL (0x0301)

Description:
A user canceled it by pressing the Cancel button.

B UCBioAPIERROR_USER_BACK
Prototype:
#define UCBIOAPIERROR_USER_BACK (0x0302)

Description:

A user canceled it by pressing the Back button. Currently, this error value is not used.

B UCBioAPIERROR_CAPTURE_TIMEOUT
Prototype:
#define UCBIOAPIERROR_CAPTURE_TIMEOUT (0x0303)

Description:
It ends because time is over the limit during fingerprint acquisition.

B UCBioAPIERROR_CAPTURE_FAKE_SUSPICIOUS

Prototype:

#define UCBiOAPIERROR_CAPTURE_FAKE_SUSPICIOUS (0x0304)

Description:

An acquired fingerprint is suspicious to be a forged fingerprint. Currently, this value is not
used.

B UCBioAPIERROR_ENROLL_EVENT_PLACE

B UCBioAPIERROR_ENROLL_EVENT_HOLD

B UCBioAPIERROR_ENROLL_EVENT_REMOVE

B UCBioAPIERROR_ENROLL_EVENT_PLACE_AGAIN

Page 152 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPIERROR_ENROLL_EVENT_PROCESS
B UCBioAPIERROR_ENROLL_EVENT_MATCH_FAILED

Prototype:

#define UCBiOoAPIERROR_ENROLL_EVENT_PLACE (0x0305)
#define UCBiOAPIERROR_ENROLL_EVENT HOLD (0x0306)
#define UCBiIOAPIERROR_ENROLL_ EVENT_REMOVE (0x0307)
#define UCBiOAPIERROR_ENROLL EVENT_ PLACE_AGAIN (0x0308)
#define UCBIOAPIERROR_ENROLL_EVENT_PROCESS (0x0309)
#define UCBiOoAPIERROR_ENROLL EVENT_MATCH_FAILED (0x030a)
Description:

When registering the Callback function to FinishCallBackinfo in the
UCBioAPI_WINDOW_OPTION structure, it is event values that can passed as dwResult value
of the UCBioAPI_ WINDOW_CALLBACK_PARAM_1 structure that is the first argument of that
function. These values are passed through Callback only during fingerprint registration.

Page 153 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

5.2.6. FastSearch related error definitions
They are definitions on error values related to FastSearch.

These error values start from the UCBioAPIERROR_BASE_FASTSEARCH(0x0400) value.

B UCBioAPIERROR_FASTSEARCH_INIT_FAIL
Prototype:

#define UCBIOAPIERROR_FASTSEARCH_INIT_FAIL

Description:
FastSearch Engine initialization failure.

B UCBioAPIERROR_FASTSEARCH_SAVE_DB
Prototype:
#define UCBIOAPIERROR_FASTSEARCH_SAVE_DB

Description:
Failure of saving of DB file for FastSearch.

B UCBioAPIERROR_FASTSEARCH_LOAD_DB
Prototype:
#define UCBIOAPIERROR_FASTSEARCH_LOAD_ DB

Description:
Failure of loading of DB file for FastSearch.

B UCBioAPIERROR_FASTSEARCH_UNKNOWN_VER
Prototype:

#define UCBIOAPIERROR_FASTSEARCH_UNKNOWN_VER

Description:
Unknown version of DB file for FastSearch.

B UCBioAPIERROR_FASTSEARCH_IDENTIFY_FAIL
Prototype:

#define UCBIOAPIERROR_FASTSEARCH_IDENTIFY_FAIL

Description:

(0x0401)

(0x0402)

(0x0403)

(0x0404)

(0x0405)

Page 154 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Failure of 1:N authentication using FastSearch Engine.

B UCBioAPIERROR_FASTSEARCH_DUPLICATED_ID

Prototype:
#define UCBioAPIERROR_FASTSEARCH_DUPLICATED_ID (0x0406)

Description:
When trying to add FIR to FastSearch DB, a user with the identical ID already exists in DB.

B UCBioAPIERROR_FASTSEARCH_IDENTIFY_STOP

Prototype:
#define UCBioAPIERROR_FASTSEARCH_IDENTIFY_STOP (0x0407)

Description:
1:N authentication is terminated by a user. In general, the Callback function for FastSearch
is registered first. During authentication, authentication is terminated if the Callback

function returns a value other than 0 and this error value is returned.

B UCBioAPIERROR_FASTSEARCH_NOUSER_EXIST

Prototype:
#define UCBioAPIERROR_FASTSEARCH_NOUSER_EXIST (0x0408)

Description:
To find or delete a user in DB for FastSearch, a user with the designated ID does not exist.

Page 155 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2.7. Optional value related error definitions
They are definitions on error values related to the UCBioAPI_FIR_OPTIONAL_DATA structure.
These error values start from the UCBioAPIERROR_BASE_OPTIONAL(0x0500) value.

B UCBioAPIERROR_OPTIONAL_UUID_FAIL

B UCBioAPIERROR_OPTIONAL_PIN1_FAIL

B UCBioAPIERROR_OPTIONAL_PIN2_FAIL

B UCBioAPIERROR_OPTIONAL_SITEID_FAIL

B UCBioAPIERROR_OPTIONAL_EXPIRE_DATE_FAIL

Prototype:

#define UCBioAPIERROR_OPTIONAL_UUID_FAIL (0x0501)
#define UCBiOoAPIERROR_OPTIONAL_PIN1_FAIL (0x0502)
#define UCBioAPIERROR_OPTIONAL_PIN2_FAIL (0x0503)
#define UCBIOAPIERROR_OPTIONAL_SITEID_FAIL (0x0504)
#define UCBiOAPIERROR_OPTIONAL_EXPIRE_DATE_FAIL (0x0505)
Description:

When performing authentication using the UCBioAPI_VerifyMatchEx function, they are error
values upon authentication failure from optional data used as additional authentication
data.

UCBIioAPIERROR OPTIONAL UUID FAIL:
UUID values of the UCBioAPI_FIR_OPTIONAL_DATA structure do not match each other.

UCBioAPIERROR_OPTIONAL_PIN1_FAIL / UCBioAPIERROR OPTIONAL PIN2_FAIL:
Pinl and pin2 value of the UCBioAPL_FIR_OPTIONAL_DATA structure do not match each
other.

UCBioAPIERROR OPTIONAL_SITEID FAIL:
SiteID values of the UCBioAPI_FIR_OPTIONAL_DATA structure do not match each other.

UCBI/oAPIERROR OPTIONAL EXPIRED DATE FAIL:
The period of ExpireDate of the UCBioAPI_FIR_OPTIONAL_DATA structure is over.

Page 156 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.2.8. SmartCard related error definitions
They are definitions on error values related to the SmartCard.
These error values start from the UCBioAPIERROR_BASE_SMARTCARD(0x0600) value.

B UCBioAPIERROR_SC_FUNCTION_FAILED
Prototype:
#define UCBioAPIERROR_SC_FUNCTION_FAILED (0x0601)

Description:
Smart card function execution failure.

B UCBioAPIERROR_SC_NOT_SUPPORTED_DEVICE

Prototype:
#define UCBioAPIERROR_SC_NOT_SUPPORTED_DEVICE (0x0602)

Description:
Currently, device functions are not supported.

B UCBioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Prototype:
#define UCBioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE (0x0603)

Description:
A function is not supported because the firmware version of a device is old.

Page 157 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3. API References

Definitions on various APIs used in UCBioBSP SDK and function use and arguments are described.

5.3.1. Basic API
APIs used in basic form are described.
These APIs are defined in the UCBioAPLh file.

® UCBioAPL Init

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_Init (

[OUT] UCBioAPI_HANDLE_PTR phHandle);
Description:

It is initialized to use UCBioAPI SDK and Handle value is obtained.

Parameters:
phHandle:
The pointer of Handle value to be obtained in UCBioAPI SDK.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_VALIDITY_FAIL
UCBIioAPIERROR_EXPIRED_VERSION

Page 158 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_Terminate

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_Terminate (

[IN] UCBioAPI_HANDLE hHandle) ;
Description:

The use of UCBioAPI SDK is terminated and Handle value is closed.

Parameters:
hHandle:
Handle value to be closed in UCBioAPI SDK.

Returns:
UCBioAPIERROR_NONE
UCBioAPIERROR_INVALID_HANDLE

Page 159 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

m UCBioAPI_GetVersion

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_GetVersion (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_VERSION_PTR pversion);
Description:

The version information of UCBioAPI SDK is obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

plersion.
The structure pointer to store the version information.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER

Page 160 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetInitInfo

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI _Getlnitinfo (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8 nStructureType,
[OUT] UCBioAPI_INIT_INFO_PTR plnitinfo);
Description:

The initialization setting value of UCBioAPI SDK is obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nStructurelype:
The type value of the information structure desired to be obtained. This value determines
the structure type of plnitinfo. Currently, only 0 is supported.

pinitinfo.

The pointer of the information structure desired to be obtained. At nStructureType, the
designated structure must be passed. Currently, only UCBioAPL_INIT_INFO_O structure is
supported but other structures may well be supported later. Before passing the value of
StructureType of the plnitinfo as an argument, it must be set to identical to the second
argument ‘StructureType' to call this function.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBIoAPIERROR_INVALID_TYPE
UCBIoAPIERROR_STRUCTTYPE_NOT_MATCHED

Page 161 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SetInitInfo

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_Setlnitinfo (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8 nStructureType,
[OUT] UCBioAPI_INIT_INFO_PTR plnitinfo);
Description:

The initial setting value of UCBioAPI SDK is re-designated.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nStructurelype:
The type value of the information structure desired to be set. This value determines the
structure type of plnitinfo.

pinitinfo.

The pointer of the information structure desired to be set. The structure designated at
nStructureType must be passed. Only the UCBioAPLINIT_INFO_O structure is currently
supported and other structures may be used in the future. Before passing the
StructureType value of the plnitinfo structure as an argument, it must be set to be identical
to the second argument ‘StructureType’ value to call this function.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_INVALID_TYPE
UCBIioAPIERROR_STRUCTTYPE_NOT_MATCHED
UCBiIoAPIERROR_INIT_MAXFINGERSFORENROLL
UCBIioAPIERROR_INIT_NECESSARYENROLLNUM
UCBiIoAPIERROR_INIT_SAMPLESPERFINGER
UCBIioAPIERROR_INIT_SECULEVELFORENROLL
UCBiIoAPIERROR_INIT_SECULEVELFORVERIFY
UCBIioAPIERROR_INIT_SECULEVELFORIDENTIFY
UCBiIoAPIERROR_INIT_RESERVED1
UCBIioAPIERROR_INIT_RESERVED?2

Page 162 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SetSkinResource

Prototype:
UCBioAPI_BOOL UCBiIoAPI UCBioOAPI_SetSkinResource (

[IN] LPCTSTR szResPath);
Description:

A skin for the user interface of UCBioAPI SDK is changed.

UCBioAPI SDK uses a skin type Ul as the screen used for registration and authentication.
Therefore, to use Ul in other languages or other forms rather than the standard UI
provided by UCBioBSP SDK, a user defined skin can be created and used.

Parameters:
szResPath:
The full path of skin resource DLL to be changed is designated.

Returns:
UCBioAPIERROR_FALSE
UCBioAPIERROR_TRUE

Page 163 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3.2. Device related API
APIS related to devices are described.
These APIs are defined in the UCBioAPLh file.

B UCBioAPI_EnumerateDevice

Prototype:
UCBi1oAPI_RETURN UCBioAPI UCBioAPI_EnumerateDevice (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_UINT32* pNumDevice,
[OUT] UCBioAPI_DEVICE_ID** ppDevicelD,
[OUT] UCBioAPI_DEVICE_INFO_EX** ppDevicelnfoEx);
Description:

A list is created after searching all devices installed in the current system.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pNumDevice:
The pointer of the value to be returned with the number of searched devices.

ppDevicelD:

The array pointer to the device ID list. Memory for this pointer array is allocated internally
in SDK and it is released automatically at the end of use. Therefore, a function user does
not have to allocate or release memory.

ppDevicelnfoEx:

The array pointer of the structure that stores detailed information on devices. Refer to the
UCBioAPI_DEVICE_INFO_EX structure. Memory for this pointer array is allocated internally
in SDK and it is released automatically at the end of use. Therefore, a function user does
not have to allocate or release memory.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_DEVICE_OPEN_FAIL

Page 164 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_OpenDevice

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_OpenDevice (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI _DEVICE_ID nDevicelD);

Description:

A desired device is opened and initialized.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nDevicelD
The ID of a device to be opened. Refer to UCBioAPI_DEVICE_ID.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBioAPIERROR_INVALID_DEVICE_ID
UCBIioAPIERROR_DEVICE_OPEN_FAIL
UCBiIoAPIERROR_DEVICE_ALREADY_OPENED

Page 165 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

B UCBioAPI_CloseDevice
Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_CloseDevice (
[IN] UCBioAPI_HANDLE
[IN] UCBioAPI_DEVICE_ID

Description:

An opened device is closed and terminated.

Parameters:
hHandle:

The Handle value of UCBioAPI SDK.

nDevicelD

hHandle,
nDevicelD);

The ID value of a device to be closed. Refer to UCBioAPI_DEVICE_ID.

Returns:
UCBioAPIERROR_NONE

UCBioAPIERROR_INVALID_HANDLE
UCBioAPIERROR_DEVICE_NOT_OPENED
UCBioAPIERROR_WRONG_DEVICE_ID

Page 166 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetDevicelnfo

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_GetDevicelnfo (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_DEVICE_ID nDevicelD,
[IN] UCBioAPI_UINT8 nStructureType,
[OUT] UCBioAPI_DEVICE_INFO_PTR pDevicelnfo);
Description:

The device setting value is loaded from a device currently opened.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nDevicelD
The ID value of a device currently opened. Refer to UCBioAPI_DEVICE_ID.

nStructurelype:
The type value of the information structure desired to be obtained. This value determines
the structure type of pDevicelnfo. This value currently supports only 0.

pDevicelnfo:

The pointer of the information structure desired to be obtained. The structure designated
at nStructureType must be passed. Only the UCBioAPI_DEVICE_INIT_INFO_O structure is
currently supported but other structures may be used in the future. Before passing the
StructureType value of the pDevicelnfo structure as an argument, it must be set to be
identical to the second argument 'StructureType’ value to call this function.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBIoAPIERROR_INVALID_TYPE
UCBIioAPIERROR_STRUCTTYPE_NOT_MATCHED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBioAPIERROR_WRONG_DEVICE_ID

Page 167 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SetDevicelnfo

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SetDevicelnfo (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_DEVICE_ID nDevicelD,
[IN] UCBioAPI_UINT8 nStructureType,
[OUT] UCBioAPI_DEVICE_INFO_PTR pDevicelnfo);
Description:

A new device setting value is re-designated at a currently opened device.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nDevicelD
The device ID value of a currently opened device. Refer to UCBioAPI_DEVICE I

nStructurelype:
The type value of the information structure desired to be set. This value determines the
structure type of pDevicelnfo. This value currently supports only O.

pDevicelnfo:

The pointer of the information structure desired to be set. The structure designated at
nStructureType must be passed. Only the UCBioAPI_DEVICE_INIT_INFO_O structure is
currently supported but other structures may be used in the future. Before passing the
StructureType value of the pDevicelnfo structure as an argument, it must be set to be
identical to the second argument 'StructureType’ value to call this function.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBIoAPIERROR_INVALID_TYPE
UCBIioAPIERROR_STRUCTTYPE_NOT_MATCHED
UCBioAPIERROR_DEVICE_NOT_OPENED
UCBioAPIERROR_WRONG_DEVICE_ID
UCBioAPIERROR_DEVICE_BRIGHTNESS
UCBIoAPIERROR_DEVICE_CONTRAST
UCBioAPIERROR_DEVICE_GAIN

Page 168 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W UCBioAPI_AdjustDevice

Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_AdjustDevice (

[IN] UCBioAPI_HANDLE hHandle,

[IN] const UCBioAPI_WINDOW_OPTION_PTR pWindowOption);
Description:

Ul that adjusts the brightness of a currently opened device is launched. But, this function
can not be used because currently supported devices internally undergo the automatic
brightness adjustment process.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pWindowOption:

The pointer of the UCBioAPI_WINDOW_OPTION structure for Ul setting. This value can
have NULL. If NULL is set, the default Ul setting is used.

For more detailed description, refer to the UCBioAPI_ WINDOW_OPTION structure.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_USER_CANCEL

Page 169 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetOpenedDevicelD

Prototype:

UCBioAPI_DEVICE_ID UCBioAPI UCBioAPI_GetOpenedDevicelD (
[IN] UCBioAPI_HANDLE hHandle);

Description:

The ID value of a currently opened device is obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

Returns:
UCBioAPI_DEVICE_ID value for the ID of a currently opened device.

Page 170 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W UCBioAPI_CheckFinger

Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_AdjustDevice (

[IN] UCBioAPI_HANDLE hHandle,

[OUT] UCBioAPI_BOOL* pbFingerExist);
Description:

It examines if a fingerprint is placed on a currently opened device and the result is notified.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pbFingerExist:
The pointer that stores a value on existence/nonexistence of a fingerprint. The value of
either 0 or 1 is stored.

Returns:

UCBiIoAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED

Page 171 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3.3. Memory related API

APIs related to FIR data or memory are described.

These APIs are defined in the UCBioAPLh file.

In general, memory related functions do not require Handle for UCBioBSP SDK as the first
argument.

B UCBioAPI_GetFIRFromHandle

Prototype:
UCBi1oAPI_RETURN UCBioAPI UCBioAPIl_GetFIRFromHandle (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_FIR_PTR PFIR);
Description:

Real FIR data are obtained from FIR Handle. Since FIR data obtained this way are the
structure that includes binary data, they can be saved in file or DB or transmitted over the
network after converted into stream data. The memory for FIR data obtained this way
must be released using the UCBioAPI FreeFIR function at the end of use.

Parameters:
hHandle:
A FIR Handle value desired to be obtained.

PFIR:
The pointer of the UCBioAPI_FIR structure desired to be obtained.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER

Page 172 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetExtendedFIRFromHandle

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_GetExtendedFIRFromHandle (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_VOID_PTR PFIR,
[IN] UCBioAPI_FIR_FORMAT Format);

Description:

Real FIR data are obtained from FIR Handle. It is identical to the
UCBioAPL_GetFIRFromHandle function but there is a difference in that it passes format
information to obtain the FIR of formats to be added later. The memory for FIR data
obtained this way must be released using the UCBioAPI_FreeFIR function at the end of use.

Parameters:
hHandle:
A FIR Handle value desired to be obtained.

PFIR:
The pointer of the UCBioAPI_FIR structure desired to be obtained. Since it is void*, it can
respond to other formats later.

Format:
The format value of FIR desired to be obtained. Only UCBioAPI_FIR_FORMAT_STANDARD(0)
is currently supported.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_UNKNOWN_FORMAT

Page 173 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetHeaderFromHandle

Prototype:

UCBioAPI_RETURN UCBioAPI UCBiIoAPI_GetHeaderFromHandle (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_FIR_HEADER_PTR pHeader) ;

Description:

Only header information of real FIR data is obtained from FIR Handle.

Parameters:
hHandle:
A FIR Handle value desired to be obtained.

pHeader:
The pointer of the UCBioAPI_FIR_HEADER desired to be obtained.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER

Page 174 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetExtendedFIRFromHandle

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_GetExtendedFIRFromHandle (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_VOID_PTR pFIR,
[IN] UCBioAPI_FIR_FORMAT Format);

Description:

Only header information of real FIR data is obtained from FIR Handle. It is identical to the
UCBioAPI_GetHeaderFromHandle function but there is a difference in that it passes format
information to obtain the FIR of formats to be added later.

Parameters:
hHandle:
A FIR Handle value desired to be obtained.

pHeader:
The pointer of the UCBioAPI_FIR_HEADER structure desired to be obtained. Since it is void*,
it can respond to other formats later.

Format:
The format value of FIR desired to be obtained. Only UCBioAPI_FIR_FORMAT_STANDARD(0)
is currently supported.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_UNKNOWN_FORMAT

Page 175 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetTextFIRFromHandle

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_GetTextFIRFromHandle (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_FIR_TEXTENCODE_PTR pTextFIR,
[IN] UCBioAPI_BOOL blsWide);

Description:

Real FIR data are obtained in text string type from FIR Handle. Since FIR data obtained this
way are the structure that includes string type data, they can be saved in file or DB or
transmitted over the network after converted to stream data. The memory for FIR data
saved this way must be released using the UCBioAPI_FreeTextFIR function at the end of use.

Parameters:
hHandle:
A FIR Handle value desired to be obtained.

pTextFIR:
The pointer of the UCBioAPI_FIR_TEXTENCODE structure desired to be obtained.

bisWide:
It designates if a text string desired to be obtained should be in Unicode. If
UCBioAPL_TRUE is set, a text string to be obtained is returned in Unicode type.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER

Page 176 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetExtendedTextFIRFromHandle

Prototype:
UCBioAPI_RETURN UCBiIoAPI UCBioAPI_GetExtendedTextFIRFromHandle (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_FIR_TEXTENCODE_PTR pTextFIR,
[IN] UCBioAPI_BOOL blsWide,
[IN] UCBioAPI_FIR_FORMAT Format) ;
Description:

Real FIR data are obtained from FIR Handle. It is identical to the
UCBioAPI_GetFIRFromHandle function but there is a difference in that it passes format
information to obtain the FIR of formats to be added later. The memory for FIR obtained
this way must be released using the UCBioAPI_FreeFIR at the end of use.

Parameters:
hHandle:
A FIR Handle value desired to be obtained.

plextFIR:
The pointer of the UCBioAPI_FIR_TEXTENCODE structure desired to be obtained.

bisWide:
It designates if a text string desired to be obtained should be in Unicode. If
UCBioAPL_TRUE is set, a text string to be obtained is returned in Unicode type.

Format:
The format value of FIR desired to be obtained. Only UCBioAPI_FIR_FORMAT_STANDARD(0)
is currently supported.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_PQOINTER
UCBioAPIERROR_UNKNOWN_FORMAT

Page 177 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_FreeFIRHandle
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_FreeFIRHandle (
[IN] UCBioAPI_HANDLE hHandle);

Description:
FIR Handle is terminated and memory is released. If the value of FIR Handle is
UCBioAPIL_INVALID_HANDLE, nothing is done.

Parameters:
hHandle:
The value of FIR Handle to be terminated.

Returns:
UCBioAPIERROR_NONE
UCBioAPIERROR_INVALID HANDLE

Page 178 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

® UCBioAPI_FreeFIR
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_FreeFIR (
[IN] UCBioAPI_VOID_PTR pFIR);

Description:
The use of FIR data is terminated and memory is released. If the pFIR value is NULL,
nothing is done.

Parameters:

PFIR:

The pointer of the FIR structure to be terminated. To support FIR formats to be added later,
it is set to void*.

Returns:
UCBioAPIERROR_NONE
UCBioAPIERROR_UNKNOWN_FORMAT

Page 179 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_FreeTextFIR

Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_FreeTextFIR (

[IN] UCBioAPI_FIR_TEXTENCODE_PTR pTextFIR);
Description:

The use of text FIR data is terminated and memory is released. If the pTextFIR value is
NULL, nothing is done.

Parameters:
plextFIR:
The pointer of the text FIR structure to be terminated.

Returns:
UCBioAPIERROR_NONE

Page 180 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W UCBioAPI_FreePayload

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_FreePayload (

[IN] UCBioAPI_FIR_PAYLOAD PTR pPayload) ;
Description:

The use of Payload data is terminated and memory is released. If the Payload value is
NULL, nothing is done.

Parameters:
pPayload:
The structure of the Payload structure to be terminated.

Returns:
UCBioAPIERROR_NONE

Page 181 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3.4. Core API
Core APIs, UCBioBSP SDK's key functions, are described.
These APIs are defined in the UCBioAPLh file.

B UCBioAPI_Capture

Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoOAPI_Capture (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPl_FIR_PURPOSE nPurpose,
[OUT] UCBioAPI_FIR_HANDLE_PTR phCapturedFIR,
[IN] UCBioAPI_SINT32 nTimeout,
[OUT] UCBioAPI_FIR_HANDLE_PTR phAuditData,
[IN] const UCBioAPI_WINDOW_OPTION_PTR pWindowOption);
Description:

FIR Handle is created by acquiring 1 fingerprint from a currently opened device. The
memory for phCapturedFIR or phAuditData obtained this way must be released using the
UCBIioAPI_FreeFIRHandle function at the end of use. Since this function uses a device, a
device must be opened before use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nPurpose:
The purpose value of FIR data can be designated. Allowed values are shown below.

#define UCBioAPI_FIR_PURPOSE_VERIFY (0x01)
#define UCBioAPI_FIR_PURPOSE_IDENTIFY (0x02)
#define UCBioAPI_FIR_PURPOSE_ENROLL (0x03)

#define UCBioAPI_FIR_PURPOSE ENROLL_FOR_VERIFICATION_ONLY (0x04)
#define UCBioAPI_FIR_PURPOSE_ENROLL_FOR_IDENTIFICATION_ONLY (0x05)
#define UCBioAPI_FIR_PURPOSE_AUDIT (0x06)
#define UCBioAPI_FIR_PURPOSE_UPDATE (0x10)

Each of values is used only as reference for FIR data and it does not have any effect on
authentication. If this value is set as Enroll related purpose, it operates in the same way as
the UCBioAPI_Enroll function.

For more detailed description, refer to the UCBioAPI_FIR_PURPOSE reference.

Page 182 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

phCapturedFIR:
The pointer to store the FIR Handle value of acquired fingerprint data.

nTimeout:
The maximum waiting time for fingerprint acquisition. As the unit is millisecond, 1,000 is
set for 1 second. The following additional values are allowed.

#define UCBioAPI_NO_TIMEOUT ')
#define UCBioAPI_USE_DEFAULT TIMEOUT (-1)
#define UCBioAPI_CONTINUOUS CAPTRUE (-2)

If 0 is set, waiting for fingerprint input continues without timeout. If a fingerprint is

entered while waiting, input process is terminated and it is returned.

- If 1 is set, it waits as much as the default waiting time designated in the
UCBIioAPI_INIT_INFO structure.

- If 2 is set, it is not terminated even if a fingerprint is entered and it continues to accept
fingerprint input.

phAuditData.
The pointer to store the FIR Handle value of acquired fingerprint image data. This value
can not have NULL value. If NULL is set, no value is returned.

pWindowOption.

The pointer of the UCBioAPI_WINDOW_OPTION structure for Ul setting. This value can
have NULL value. If NULL is set, the default Ul setting is used.

For more detailed description, refer to the UCBioAPI. WINDOW_OPTION structure.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_USER_CANCEL
UCBIioAPIERROR_CAPTURE_TIMEOUT
UCBioAPIERROR_CAPTURE_FAKE_SUSPICIOUS

Page 183 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_Process

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_Process (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR piCapturedFIR,
[OUT] UCBioAPI_FIR_HANDLE_PTR phProcessedFIR);
Description:

FIR Handle is created by extracting fingerprint special features from Audit FIR. The memory
for phProcessedFIR obtained this way must be released using the UCBioAPI_FreeFIRHandle
function at the end of use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

piCapturedFiR:
The pointer of the UCBioAPI_INPUT_FIR structure that stores FIR data for extracting special
features. Refer to the UCBioAPI_ INPUT _FIR structure.

phProcessedFIR:
The pointer to store the FIR Handle value of acquired fingerprint data.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_UNKNOWN_INPUTFORMAT
UCBioAPIERROR_ALREADY_PROCESSED
UCBiIoAPIERROR_DATA_PROCESS_FAIL

Page 184 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_CreateTemplate

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI CreateTemplate (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR piCapturedFIR,
[IN] const UCBioAPI_INPUT_FIR_PTR piStoredFIR,
[OUT] UCBioAPI_FIR_HANDLE_PTR phNewFIR,
[IN] const UCBioAPI_FIR_PAYLOAD PTR pPayload);
Description:

A new FIR Handle is created by merging new FIR data with existing FIR data or replacing
with new FIR data. Also, it can be used in replacing existing FIR with new Payload. The
memory for phNewFIR obtained this way must be released wusing the
UCBioAPI_FreeFIRHandle function at the end of use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

piCapturedfiR:
The pointer of the UCBioAPIINPUT_FIR structure that stores FIR data to be used in
replacement. Refer to the UCBioAPI_INPUT_FIR structure.

piStoredFIR:

The pointer of the UCBioAPI_INPUT_FIR structure that stores FIR data to be used as a base.
Refer to the UCBioAPI_INPUT_FIR structure.

If this value is not NULL, FIR data are created using this value as a base.

Assume that this FIR value stores data for thumb, index and middle of the right hand and
piCapturedFIR data, the new replacement, store data for the right hand thumb and left
hand thumb. The final FIR data to be created will include all - right hand index and middle
in piStoredFIR data and right hand thumb and left hand thumb in piCapturedFIR data. That
is, new data are created from existing data through the addition and modification of new
data.

phiNewfIR:
The pointer to store the FIR Handle value of acquired fingerprint data.

pPayload:
The pointer of the structure that stores Payload data to be stored at phNewFIR data to be
created. This value can use NULL. If NULL is set, the Payload value of existing data is kept.

Page 185 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_MUST_BE_PROCESSED_DATA
UCBiIoAPIERROR_EXTRACTION_OPEN_FAIL
UCBIioAPIERROR_UNKNOWN_FORMAT

Page 186 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_VerifyMatch

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI VerifyMatch (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI INPUT_FIR_PTR piProcessedFIR,
[IN] const UCBioAPI_INPUT_FIR_PTR piStoredFIR,
[OUT] UCBioAPI_BOOL* pbResult,
[IN] const UCBioAPI_FIR_PAYLOAD PTR pPayload);
Description:

Previously acquired two FIR data are compared and that authentication result is obtained.
If authentication succeeds, the Payload value stored in FIR data for registration can also be
obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

piProcessedFIR:
The pointer of the UCBioAPIINPUT_FIR structure that stores FIR data requiring for
authentication. Refer to the UCBioAPI_INPUT_FIR structure.

piStoredFIR:
The pointer of the UCBioAPLINPUT_FIR structure that stores FIR data for registration
requiring authentication. Refer to the UCBioAPI_INPUT_FIR structure.

pbResult:
The pointer to store the authentication result value. The value of either 0 or 1 is returned.

pPayload:

When authentication succeeds, the Payload value stored in piStoredFIR can be obtained
and the pointer of the structure to be returned with that value is designated. This value
can use NULL. If NULL is set, the Payload value is not returned.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_MUST_BE_PROCESSED_DATA
UCBiIoAPIERROR_EXTRACTION_OPEN_FAIL
UCBIioAPIERROR_UNKNOWN_FORMAT

Page 187 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_VerifyMatchEx

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_ VerifyMatchEx (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI INPUT_FIR_PTR piProcessedFIR,
[IN] const UCBioAPI_INPUT_FIR_PTR piStoredFIR,
[OUT] UCBioAPI_BOOL* pbResult,
[IN] const UCBioAPI_FIR_PAYLOAD PTR pPayload,
[IN] UCBioAPI_MATCH_OPTION_PTR pMatchOption);
Description:

Previously acquired two FIR data are compared and that authentication result is obtained.
When authentication succeeds, the Payload value stored in FIR data for registration can be
obtained.

It is identical to the UCBioAPI_VerifyMatch function and also it can designate values to use
additional authentication data for authentication. If these values are designated, fingerprint
authentication is performed only when authentication for these values succeeds before
fingerprint authentication.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

piProcessedFIR:
The pointer of the UCBIoAPLINPUT_FIR structure that stores FIR data requiring
authentication. Refer to the UCBioAPI_INPUT_FIR structure.

piStoredFIR:
The pointer of the UCBioAPIINPUT_FIR structure that stores FIR data for registration
requiring authentication. Refer to the UCBioAPI_INPUT_FIR structure.

pbResult:
The pointer to store the authentication result value. The value of either 0 or 1 is returned.

pPayload:

When authentication succeeds, the Payload value stored in piStoredFIR can be obtained
and it designates the pointer of the structure to be returned with that value. This value can
use NULL. If NULL is set, the Payload value is not returned.

pMatchOption:
Values to use additional authentication data for authentication are designated. For detailed

Page 188 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

descriptions on these values, refer to the UCBioAPI_MATCH_OPTION structure.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_MUST_BE_PROCESSED_DATA
UCBiIoAPIERROR_EXTRACTION_OPEN_FAIL
UCBIioAPIERROR_UNKNOWN_FORMAT
UCBioAPIERROR_OPTIONAL_UUID_FAIL
UCBIioAPIERROR_OPTIONAL_PIN1_FAIL
UCBiIoAPIERROR_OPTIONAL_PIN2_FAIL
UCBIioAPIERROR_OPTIONAL_SITEID_FAIL
UCBiIoAPIERROR_OPTIONAL_EXPIRE_DATE_FAIL

Page 189 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

® UCBioAPI_Enroll

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_Enroll (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR piStoredFIR,
[OUT] UCBioAPI_FIR_HANDLE_PTR phEnrolledFIR,
[IN] const UCBioAPI_FIR_PAYLOAD_PTR pPayload,
[IN] UCBioAPI_SINT32 nTimeout,
[OUT] UCBioAPI_FIR_HANDLE_PTR phAuditData,
[IN] const UCBioAPI_WINDOW_OPTION_PTR pWindowOption);
Description:

FIR Handle is created by acquiring fingerprints of 1 person from a currently opened device.
Since they are fingerprints of 1 person, fingerprints for several fingers are registered at the
same time to create one FIR data. The memory for phEnrolledFIR or phAuditData obtained
this way must be released using the UCBioAPI_FreeFIRHandle function at the end of use.
Since this function uses a device, a device must be opened before use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

piStoredFIR:
To modify existing FIR data, this value is designated. If this value is set as NULL, a new
fingerprint is entered.

phEnrolledFIR:
The pointer to store the FIR Handle value of registered fingerprint data.

pPayload:
The pointer of the structure that stores Payload data to be stored at phNewFIR data to be
created. This value can use NULL. If NULL is set, the Payload value of existing data is kept.

nTimeout:
The maximum waiting time for fingerprint acquisition. Since the unit is millisecond, 1,000

represents 1 second. The following additional values are allowed.

#define UCBioAPI_NO_TIMEOUT ')
#define UCBioAPI_USE_DEFAULT TIMEOUT (-1)

If 0 is set, it continues to wait for fingerprint input without timeout. If a fingerprint is

Page 190 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

entered while waiting, input process is terminated and it proceeds to the next step.

-If 1 is set, it waits as much as the default waiting time designated in the
UCBIioAPI_INIT_INFO structure.

-2 is not used in the UCbioAPI_Enroll function.

phAuditData:
The pointer to store the FIR Handle value of acquired fingerprint image data. This value
can have NULL. If NULL is set, the value is not returned.

pWindowOption:

The pointer of the UCBioAPI_WINDOW_OPTION structure for Ul setting. This value can
have NULL. If NULL is set, the default Ul setting is used.

For more detailed description, refer to the UCBioAPI_ WINDOW_OPTION structure.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_FUNCTION_FAIL
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_USER_CANCEL
UCBioAPIERROR_USER_BACK

Page 191 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_Verify

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI Verify (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR piStoredFIR,
[OUT] UCBioAPI_BOOL* pbResult,
[OUT] UCBioAPI_FIR_PAYLOAD PTR pPayload,
[IN] UCBioAPI_SINT32 nTimeout,
[OUT] UCBioAPI_FIR_HANDLE_PTR phAuditData,
[IN] const UCBioAPI_WINDOW_OPTION_PTR pWindowOption);
Description:

Previously acquired FIR data and fingerprint data entered in real time from the current
device are compared and the authentication result is obtained. If authentication succeeds,
the Payload value stored in FIR data for registration can be also obtained. It is nearly
identical to the UCBioAPI_VerifyMatch function but there is a difference in that it performs
authentication by accepting a fingerprint in real time.

That is, it can be thought that both the UCBioAPI_Capture and UCBioAPIL VerifyMatch
functions are internally executed together. Since this function uses a device, a device must
be opened before use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

piStoredFIR:
The pointer of the UCBioAPIINPUT_FIR structure that stores FIR data for registration
requiring authentication. Refer to the UCBioAPI_INPUT_FIR structure.

pbResult:
The pointer to store the authentication result value. The value of either 0 or 1 is returned.

pPayload:

When authentication succeeds, the Payload value stored in piStoredFIR can be obtained,
and the pointer of the structure to be returned with that value is designated. This value
can use NULL. If NULL is set, the Payload value is not returned.

nTimeout:
The maximum waiting time for fingerprint registration. Since the unit is millisecond, 1,000
represents 1 second. The following additional values are allowed.

Page 192 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

#define UCBioAPI_NO_TIMEOUT ©)
#define UCBioAPI_USE_DEFAULT TIMEOUT (-1)
#define UCBioAPI_CONTINUOUS CAPTRUE (-2)

If 0 is set, it continues to wait without timeout. If a fingerprint is entered while waiting,

input process is terminated and it is returned.

-If 1 is set, it waits as much as the default waiting time designated in the
UCBioAPLINIT_INFO structure.

-If 2 is set, it continues to accept fingerprint input even if a fingerprint is entered.

phAuditData.
The pointer to store the FIR Handle value of acquired fingerprint image data. This value
can have NULL. If NULL is set, a value is not returned.

pWindowOption.

The pointer of the UCBioAPI_WINDOW_OPTION structure for Ul setting. This value can
have NULL. If NULL is set, the default UI setting is used.

For more detailed description, refer to the UCBioAPI WINDOW_OPTION structure.

Returns:

UCBiIoAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_PQOINTER
UCBioAPIERROR_MUST_BE_PROCESSED_DATA
UCBIioAPIERROR_EXTRACTION_OPEN_FAIL
UCBioAPIERROR_UNKNOWN_FORMAT
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_USER_CANCEL
UCBIioAPIERROR_CAPTURE_TIMEOUT
UCBioAPIERROR_CAPTURE_FAKE_SUSPICIOUS

Page 193 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3.5. Data conversion API
APIs related to data conversion are described.
These APIs are defined in the UCBioAPI_Export.h file.

B UCBioAPI_FIRToTemplate

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_FIRToTemplate (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR piFIR,
[OUT] UCBioAPI_EXPORT_DATA_PTR pExportData,
[IN] UCBioAPI_TEMPLATE_TYPE nExportType);
Description:

Template information in desired type is obtained from FIR data. After calling the function,
the structure that stores each of template informations can be obtained. The memory for
pExportData obtained this way must be released using the UCBioAPI_FreeExportData
function at the end of use.

Because FIR data generally hide internal data through encryption, template-by-template
information is not known. To process data template-by-template as in other application
programs or in the terminal, data need to be converted using this function before use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

PIFIR:
The pointer of the UCBioAPI_INPUT_FIR structure that stores FIR data requiring conversion.
Refer to the UCBioAPI_ INPUT _FIR structure.

pExportData:
The pointer of the structure to store converted template data. Refer to the
UCBIioAPI_EXPORT_DATA structure.

nkxportlype:
Template data type to convert is designated.
For information of allowed values, refer to the UCBioAPI_ TEMPLATE_TYPE definition.

Returns:
UCBioAPIERROR_NONE
UCBioAPIERROR_INVALID_HANDLE

Page 194 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

UCBioAPIERROR_INVALID_POINTER
UCBioAPIERROR_MUST_BE_PROCESSED_DATA
UCBioAPIERROR_FUNCTION_FAIL

Page 195 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_TemplateToFIR

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_TemplateToFIR (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8* pTemplateData,
[IN] UCBioAPI_UINT32 nTemplateDataSize,
[IN] UCBioAPI_UINT32 nTemplateDataType,
[IN] UCBioAPI_FIR_PURPOSE nPurpose,
[OUT] UCBioAPI_FIR_HANDLE_PTR phProcessedFIR);
Description:

FIR Handle is created using 1 template information in a specific type. After calling the
function, FIR Handle with template information can be obtained. The memory for
phProcessedFIR obtained this way must be released using the UCBioAPI_FreeFIRHandle at
the end of use. In general, UCBioBSP SDK does not allow direct authentication using
template and all data are required to be converted into FIR type before use. Therefore, it is
necessary to convert all data into FIR data using this function.

This function is used to convert template data into FIR Handle simply. To convert template
data into FIR Handle with more detailed information, use the UCBioAPI_ImportDataToFIR
function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

plemplateData:
The memory block that stores 1 template data requiring conversion.

nlemplateDataSize:
The length of template data to be converted.

nlemplateDataType:
The type of template data to be converted is designated.
For information on allowed values, refer to the UCBioAPI_TEMPLATE_TYPE definition.

nPurpose:

The purpose value of FIR data to convert can be designated.

These values are used only for reference on FIR data and they have no effect on
authentication. For more detailed description, refer to the UCBioAPI_FIR_PURPOSE
definition.

Page 196 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

phProcessedFiIR:
The pointer to store the FIR Handle value of converted fingerprint data.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBioAPIERROR_FUNCTION_FAIL
UCBIioAPIERROR_INVALID_TEMPLATESIZE

Page 197 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_TemplateToFIREx

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_ TemplateToFIREX (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8* pTemplateData,
[IN] UCBioAPI_UINT32 nTemplateDataSize,
[IN] UCBioAPI_UINT32 nOneTemplateDataSize,
[IN] UCBioAPI_UINT32 nTemplateDataType,
[IN] UCBioAPI_FIR_PURPOSE nPurpose,
[OUT] UCBioAPI_FIR_HANDLE PTR phProcessedFIR);
Description:

FIR Handle is created using a large number of template informations in a specific type.
After calling the function, FIR Handle with template information can be obtained. The
memory for phProcessedFIR obtained this way must be released using the
UCBioAPI_FreeFIRHandle function at the end of use.

In general, UCBioBSP SDK does not allow direct authentication using template and all data
are required to be converted into FIR type before use. Therefore, it is necessary to convert
all data into FIR data using this function before use.

This function is used to simply convert data into FIR Handle. To convert data into FIR
Handle with more detailed information, use the UCBioAPI_ImportDataToFIR function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

plemplateData.
The memory block that stores a large number of template data requiring conversion.

nlemplateDataSize:

The entire length of template data to be converted.

The entire data length must be a multiple of nOneTemplateDataSize. To create FIR using
two of template data with 400 byte size, make pTemplateData an 800 byte size memory
block and store two data in succession. After that, designate nTemplateDataSize with 800
and nOneTemplateDataSize with 400.

nOnelemplateDataSize:
The length of 1 template data to be converted.

nlemplateDataType:
The type of template data to be converted is designated.

Page 198 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

For information on allowed values, refer to the UCBioAPI_TEMPLATE_TYPE definition.

nPurpose:

The purpose value of FIR data to convert can be designated.

These values are used only for reference on FIR data and they have no effect on
authentication. For more detailed description, refer to the UCBioAPI _FIR_PURPOSE
definition.

phProcessedFiIR:
The pointer to store the FIR Handle of converted fingerprint data.

Returns:

UCBiIoAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBioAPIERROR_FUNCTION_FAIL
UCBIioAPIERROR_INVALID_TEMPLATESIZE

Page 199 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_ConvertTemplateData

Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_ConvertTemplateData (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8* pTemplateData,
[IN] UCBioAPI_UINT32 nTemplateDataSize,
[IN] UCBioAPI_UINT32 nOneTemplateDataSize,
[IN] UCBioAPI_UINT32 nTemplateDataType,
[IN] UCBioAPI_UINT32 nConvertType,
[OUT] UCBioAPI_UINT8** ppConvertedData,
[OUT] UCBioAPI_UINT32** ppConvertedDatalen);
Description:

This function is used when converting into another type of template information using a
large number of template informations in a specific type. After calling the function, the
memory block point with template information can be obtained. The memory for
ppConvertedData and ppConvertedDatalLen obtained this way must be released using the
UCBioAPI_FreeData function at the end of use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

plemplateData:
The memory block that stores a large number of template data requiring conversion.

nlemplateDataSize:

The entire length of template data to be converted.

The entire data length must be a multiple of nOneTemplateDataSize. To create FIR using
two of template date with 400 byte size, make pTemplateData 800 byte size memory block
and store two data in succession. After that, designate nTemplateDataSize with 800 and
nOneTemplateDataSize with 400.

nOneTemplateDataSize:
The length of 1 template data to be converted.

nlemplateDataType:
The type of template data to be converted is designated.

For information on allowed values, refer to the UCBioAPI_TEMPLATE_TYPE definition.

nConvertiype:

Page 200 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

The type of template data to convert is designated.
For information on allowed values, refer to the UCBioAPI_TEMPLATE_TYPE definition.

ppConvertedData:

The memory block pointer to store template data to convert. Since memory for this value
is allocated internally, the memory must be released using the UCBioAPI_FreeData function
at the end of use.

When a large number of templates were converted, a large number of templates are
stored sequentially in this memory block. Each of template size is stored sequentially at
ppConvertedDatalen as array.

ppConvertedDatalen:

The memory block pointer to store the length of template data to convert. Since memory
for this value is allocated internally, the memory must be released using the
UCBIioAPI_FreeData function at the end of use.

This value is an array type and length values are stored sequentially when a large number
of templates were converted.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIoAPIERROR_FUNCTION_FAIL
UCBiIoAPIERROR_INVALID_TEMPLATESIZE

Page 201 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_ImportDataToFIR

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI _ImportDataToFIR (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_EXPORT_DATA PTR pExportData,
[IN] UCBioAPI_FIR_PURPOSE nPurpose,
[OUT] UCBioAPI_FIR_HANDLE_PTR phProcessedFIR);
Description:

FIR Handle is created using a large number of template informations in a specific type.
After calling the function, FIR Handle with template information can be obtained. The
memory for phProcessedFIR obtained this way must be released using the
UCBIioAPI_FreeFIRHandle function at the end of use.

In general, UCBioBSP SDK does not allow direct authentication using template and all data
are required to be converted into FIR type before use. Therefore, it is necessary to convert
data into FIR data using this function.

This function implements the same thing as the UCBioAPI_TemplateToFIR function but it
can convert data into FIR Handle while including more detailed finger information.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pExportData:
The pointer that stores template data to be converted. Refer to the
UCBioAPI_EXPORT_DATA structure.

nPurpose:

The purpose value of FIR data to convert can be designated.

These values are used only for reference on FIR data and they do not have any effect on
authentication. For more detailed description, refer to the UCBioAPI_FIR_PURPOSE
definition.

phProcessedfiR:
The pointer to store the FIR Handle value of converted fingerprint data.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIoAPIERROR_FUNCTION_FAIL

Page 202 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

UCBioAPIERROR_INVALID_TEMPLATESIZE

Page 203 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_ImportDataToFIREx

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_ImportDataToFIREXx (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_EXPORT_DATA PTR pExportData,
[IN] UCBioAPI_FIR_PURPOSE nPurpose,
[IN] UCBioAPI_FIR_DATA TYPE nDataType,
[OUT] UCBioAPI_FIR_HANDLE_PTR phProcessedFIR,
[IN] UCBioAPI_VOID PTR pReserved);
Description:

FIR Handle is created using a large number of templates in a specific type. After calling the
function, FIR Handle with template information can be obtained. The memory for
phProcessedFIR obtained this way must be released using the UCBioAPI_FreeFIRHandle
function at the end of use.

In general, UCBioBSP SDK does not allow direct authentication and all data are required to
be converted into FIR type before use. Therefore, it is necessary to convert data into FIR
data using this function.

This function implements the same operation as the UCBioAPI_ImportDataToFIR function
but it can designate the data type information of FIR also.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pExportData:
The pointer that stores template data to be converted. Refer to the
UCBioAPI_EXPORT_DATA structure.

nPurpose:

The purpose value of FIR data to convert can be designated.

These values are used only for reference on FIR data and they do not have any effect on
authentication. For more detailed description, refer to the UCBioAPI_FIR_PURPOSE
definition.

nDatalype:

The data type of FIR data to convert can be designated.

For more detailed description on these values, refer to the UCBioAPI_FIR_DATA_TYPE
definition.

phProcessedFiIR:

Page 204 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

The pointer to store the FIR Handle value of converted fingerprint data.

pReserved:
Reserved argument.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBioAPIERROR_FUNCTION_FAIL
UCBIioAPIERROR_INVALID_TEMPLATESIZE

Page 205 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_AuditFIRTolmage

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_ AuditFIRTolmage (

[IN] UCBioAPI_HANDLE hHandle,

[IN] const UCBioAPI_INPUT_FIR_PTR piAuditFIR,

[OUT] UCBioAPI_EXPORT_AUDIT_DATA_PTR pExportAuditData);
Description:

Image information in a desired raw format is obtained from Audit FIR data that stores
image information. After calling the function, the structure with each of image informations
can be obtained. The memory for pExportAuditData obtained this way must be released
using the UCBioAPI_FreeExportAuditData function at the end of use.

Since Audit FIR data generally hide internal data through encryption, finger-by-finger
image information can not be known. Therefore, to process data in finger-by-finger as in
other application programs or in the terminal, data need to be converted using this
function to use image stored in Audit FIR.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

PIAUAItFIR:
The pointer of the UCBiIoAPLINPUT_FIR structure that stores Audit FIR data requiring
conversion. Refer to the UCBioAPI_INPUT _FIR structure.

pExportAuditData.
The pointer to store converted image data. Refer to the UCBioAPI_EXPORT_AUDIT_DATA
structure.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBioAPIERROR_ALREADY_PROCESSED
UCBiIoAPIERROR_UNKNOWN_INPUTFORMAT
UCBIoAPIERROR_FUNCTION_FAIL

Page 206 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_ImageToAuditFIR

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI _ImportDataToFIR (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_EXPORT_AUDIT DATA PTR pExportAuditData,
[OUT] UCBioAPI_FIR_HANDLE_PTR phAuditFIR);
Description:

Audit FIR Handle is created using a large number of image informations in the raw format.
After calling the function, Audit FIR Handle with image information can be obtained. The
memory for phAuditFIR obtained this way must be released wusing the
UCBioAPI_FreeFIRHandle function at the end of use.

In general, UCBioBSP SDK does not allow direct authentication using image and all data
need to be converted into FIR type before use. Therefore, it is necessary to convert data
into FIR data using this function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pExportAuditData.
The pointer of the structure that stores image data to be converted. Refer to the
UCBioAPI_EXPORT_AUDIT_DATA structure.

PhAUdItFIR:
The pointer to store the FIR Handle value of converted fingerprint image data.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIoAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_FUNCTION_FAIL

Page 207 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_FreeData

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_ FreeData (

[IN] UCBioAPI_UINT8* pData);
Description:

The memory of data created by the UCBioAPI_ConvertTemplateData function is released.

Parameters:
pData:
The pointer of the block data to release. If this value is NULL, nothing is done.

Returns:
UCBioAPIERROR_NONE

Page 208 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_FreeExportData
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_FreeExportData (
[IN] UCBioAPI_EXPORT DATA PTR pExportData);

Description:
The memory of the UCBioAPL_EXPORT_DATA structure created by the
UCBioAPIL_FIRToTemplate function is released.

Parameters:
pExportData:
The pointer of the UCBioAPI_EXPORT_DATA structure to release. If this value is NULL,

nothing is done.

Returns:
UCBioAPIERROR_NONE

Page 209 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_FreeExportAuditData
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_FreeExportAuditData (
[IN] UCBioAPI_EXPORT_AUDIT DATA_PTR pExportAuditData);

Description:
The memory of the UCBioAPI_EXPORT_AUDIT_DATA structure created by the
UCBioAPI_AuditFIRTolmage function is released.

Parameters:

pExportAuditData.

The pointer of the UCBioAPI_EXPORT_AUDIT_DATA structure to release. If this value is
NULL, nothing is done.

Returns:
UCBioAPIERROR_NONE

Page 210 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3.6. FastSearch API
APIs related to FastSearch are described.
These APIs are defined in the UCBioAPI_FastSearch.h file.

B UCBioAPI_InitFastSearchEngine
Prototype:
UCBi0oAPI_RETURN UCBioAPI UCBioAPI_InitFastSearchEngine (
[IN] UCBioAPI_HANDLE hHandle);

Description:

FastSearch Engine is initialized.

To use FastSearch Engine, it must be initialized using this function. At the end of use, it
must be terminated using the UCBioAPI_TerminateFastSearchEngine function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_VERIFICATION_OPEN_FAIL

Page 211 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

B UCBioAPI_TerminateFastSearchEngine
Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_TerminateFastSearchEngine (

[IN] UCBioAPI_HANDLE

Description:
The use of FastSearch Engine is terminated.

hHandle);

At the end of FastSearch Engine use, it must be terminated using this function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FASTSEARCH_INIT_FAIL

Page 212 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetFastSearchInitInfo

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_GetFastSearchlnitinfo (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8 nStructureType,
[OUT] UCBioAPI_INIT_INFO_PTR plnitinfo);

Description:

The initial setting value of FastSearch Engine is obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nStructurelype:
The type value of the information structure desired to be obtained. This value determines
the structure type of plnitInfo. Currently, 0 is supported.

pinitinfo.

The pointer of the information structure desired to be obtained. The structure designated
at nStructureType must be passed. Only the UCBioAPI_FASTSEARCH_INIT_INFO_O is
currently supported but other structures may be used in the future. Before passing the
StructureType value of the plnitinfo structure as an argument, it must be set to be identical
to the second argument ‘StructureType’ value to call this function.

Returns:

UCBioAPIERROR_NONE

UCBioAPIERROR_INVALID_HANDLE

UCBioAPIERROR_INVALID_POINTER

UCBioAPIERROR_INVALID_TYPE

UCBioAPIERROR_STRUCTTYPE_NOT_MATCHED

UCBioAPIERROR_FASTSEARCH_INIT_FAIL

Page 213 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SetFastSearchlnitinfo

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SetFastSearchlnitinfo (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8 nStructureType,
[OUT] UCBioAPI_INIT_INFO_PTR plnitinfo);

Description:

The initial setting value of FastSearch Engine is re-designated.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nStructurelype:
The type value of the information structure desired to be set. This value determines the
structure type of plnitInfo. Currently, only O is supported.

pinitinfo.

The pointer of the information structure desired to be set. The structure designated at
nStructureType must be passed. Only the UCBioAPI_FASTSEARCH_INIT_INFO_O structure is
currently supported but other structures may be used in the future. Before passing the
StructureType value of the plnitinfo structure as an argument, it must be set to be identical
to the second argument ‘StructureType’ value to call this function.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_INVALID_TYPE
UCBIioAPIERROR_STRUCTTYPE_NOT_MATCHED
UCBiIoAPIERROR_FASTSEARCH_INIT_FAIL

Page 214 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

® UCBioAPI_AddFIRToFastSearchDB

Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_AddFIRToFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR pINputFIR,
[IN] UCBioAPI_UINT32 nUserliD,
[OUT] UCBioAPI_FASTSEARCH_SAMPLE_INFO_PTR pSamplelnfo);
Description:

FIR data are added to DB for FastSearch.

For 1:N authentication, the DB to implement 1:N authentication needs to be built first.
That DB is created using this function.

Also, 1:N authentication internally operates in template unit not in FIR unit. Therefore, even
if one FIR is added, several numbers of data are added to the DB when several numbers of
templates exist inside FIR. Information in added templates can be obtained through the
pSamplelnfo value.

The memory for the DB «created this way must be released using the
UCBioAPI_ClearFastSearchDB function at the end of use.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

plnputFiR:
The pointer of the UCBioAPI_INPUT_FIR structure that stores FIR data to be added.
Refer to the UCBioAPI_INPUT _FIR structure.

nUserlD:
The user ID of FIR to be added.

pSamplelnfo:
The value on template information of FIR added to the DB can be obtained. If it is not
necessary to obtain this value, NULL is set. Refer to the

UCBioAPI_FASTSEARCH_SAMPLE_INFO structure.

Using this value, data on templates added by a user application program can be managed.
For detailed example of use, refer to the UCBioBSP_FastSearchDemo folder in the Samples
folder in SDK.

Returns:
UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE

Page 215 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

UCBioAPIERROR_INVALID_POINTER
UCBioAPIERROR_FASTSEARCH_INIT_FAIL
UCBioAPIERROR_FASTSEARCH_DUPLICATED_ID
UCBioAPIERROR_FASTSEARCH_UNKNOWN_VER

Page 216 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_RemoveFpFromFastSearchDB

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_RemoveFpFromFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_FASTSEARCH_FP_INFO_PTR pFplinfo);

Description:

Specific data are deleted from the DB for FastSearch.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pFpinfo:
The pointer of the UCBioAPI_FASTSEARCH_FP_INFO structure that stores template
information to be deleted. Refer to the UCBioAPI_FASTSEARCH_FP_INFO structure.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIoAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_FASTSEARCH_INIT_FAIL
UCBioAPIERROR_FASTSEARCH_NOUSER_EXIST

Page 217 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_RemoveUserFromFastSearchDB

Prototype:

UCB1oAPI_RETURN UCBioAPI UCBioAPI_RemoveUserFromFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT32 nUserliD);

Description:

All data for a specific user ID are deleted from the DB for FastSearch.

It is similar to the UCBioAPI_RemoveFpFromFastSearchDB function but there is a difference
in that all data are deleted when several numbers of template data with the same user ID
are stored in the DB.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nUserlD:
The user ID to be deleted.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_FASTSEARCH_INIT_FAIL
UCBioAPIERROR_FASTSEARCH_NOUSER_EXIST

Page 218 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_IdentifyFIRFromFastSearchDB

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_IldentifyFIRFromFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_INPUT_FIR_PTR pInputFIR,
[IN] UCBioAPI_FIR_SECURITY_LEVEL nSecuLevel,
[OUT] UCBioAPI_FASTSEARCH_FP_INFO_PTR pFpinfo,

[IN] UCBioAPI_FASTSEARCH_CALLBACK_INFO_PTR_O pCallbackInfo0);

Description:

1:N authentication with specific FIR is attempted at the DB for FastSearch.

If authentication succeeds after calling the function, authenticated template information
can be obtained. Due to the nature of 1:N authentication, authentication time may vary
each time. Also, the system speed and memory may affect authentication time.

If a user wants to know the authentication process or stop authentication arbitrarily during
authentication, the Callback function can be registered and used.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

plnputFiR:
The pointer of the UCBioAPI_INPUT_FIR structure that stores FIR data to be authenticated.
Refer to the UCBioAPI_INPUT _FIR structure..

nSeculevel:
Security level used during authentication is designated.
For allowed values, refer to the UCBioAPI_FIR_SECURITY_LEVEL definition.

pFpinfo:
When authentication succeeds, information of successfully authenticated template data is
stored. Information such as user ID, finger ID and template number can be obtained using

this value.

pCallbackinfoO:

The Callback function to be called during authentication can be designated. For more
information on the Callback function, refer to the

UCBioAPI_FASTSEARCH_CALLBACK_INFO_O definition.

Returns:
UCBioAPIERROR_NONE

Page 219 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

UCBioAPIERROR_INVALID_HANDLE
UCBioAPIERROR_INVALID_POINTER
UCBioAPIERROR_FASTSEARCH_INIT_FAIL
UCBioAPIERROR_INVALID_PARAMETER
UCBioAPIERROR_FASTSEARCH_IDENTIFY_STOP
UCBioAPIERROR_FASTSEARCH_IDENTIFY_FAIL

Page 220 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

m UCBioAPI_ClearFastSearchDB
Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_ClearFastSearchDB (

[IN] UCBioAPI_HANDLE

Description:
The memory of the DB for FastSearch is released.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_FASTSEARCH_INIT_FAIL

hHandle);

Page 221 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SaveFastSearchDBToFile

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SaveFastSearchDBToFile (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_CHAR* szFilepath);

Description:

The DB for FastSearch is saved as file. If the memory DB is saved as file, loading becomes
faster in the next use of the DB using the UCBioAPI_LoadFastSearchDBFromFile function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

szFilepath.
The full path of a file name to be saved as a file.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_FASTSEARCH_INIT_FAIL
UCBIioAPIERROR_FASTSEARCH_SAVE_DB

Page 222 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_LoadFastSearchDBToFile

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_LoadFastSearchDBToFile (
[IN] UCBioAPI_HANDLE hHandle,
[IN] const UCBioAPI_CHAR* szFilepath);

Description:

The DB for FastSearch is loaded to the memory from the file.
Only files saved using the UCBioAPI_SaveFastSearchDBToFile function can be loaded this
way.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

szFilepath.
The full path of a file name to be loaded.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_FASTSEARCH_INIT_FAIL
UCBiIoAPIERROR_FASTSEARCH_LOAD_DB

Page 223 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetFpCountFromFastSearchDB

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_GetFpCountFromFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle);
[OUT] UCBioAPI_UINT32* pDataCount);

Description:

The number of templates stored in the DB for FastSearch is obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pDataCount:
The pointer to store the number of templates to be obtained.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_FASTSEARCH_INIT_FAIL

Page 224 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_GetFpInfoFromFastSearchDB

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_GetFplnfoFromFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT32 nDatalndex,
[OUT] UCBioAPI_FASTSEARCH_FP_INFO_PTR pFpInfo);

Description:

.Template information stored in a specific index in the DB for FastSearch is obtained.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

nDatalndex:
The index value to be obtained.

pFpinfo:

The pointer of the UCBioAPI_FASTSEARCH_FP_INFO structure to store template data
information. Informations such as user ID, finger ID and template number are obtained
through this value.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_INVALID_POINTER
UCBIioAPIERROR_FASTSEARCH_INIT_FAIL
UCBiIoAPIERROR_INVALID_PARAMETER

Page 225 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_CheckFpExistInFastSearchDB

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_CheckFpExistlnFastSearchDB (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_FASTSEARCH_FP_INFO_PTR pFplinfo,
[OUT] UCBioAPI_BOOL* pExist);

Description:

It examines if data with specific template information exist in the DB for FastSearch.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pfrpinfo:
The pointer of the structure that stores template data to be examined.

PEXISt:
The pointer to get the status of existence. If it exists, the value of 1 is returned.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_INVALID_POINTER
UCBiIoAPIERROR_FASTSEARCH_INIT_FAIL

Page 226 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

5.3.7. SmartCard API
APIs related to the smart card are described.
These APIs are defined in the UCBioAPI_SmartCard.h file.

® Note - Some functions for using the smart card may not be supported depending on
the firmware version of a device.

B UCBioAPI_SC_RFPowerOn
Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_SC RFPowerOn (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT16 wLed);

Description:
The RF power in the RF range is switched on within 5 seconds.
Most of smart card APIs operate with the RF power switched on.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

wleq:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 227 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_RFPowerOff
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_RFPowerOff (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT16 wLed);

Description:
The RF power in the RF range is switched off within 5 seconds.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 228 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

® UCBioAPI_SC_RFFunction

Prototype:

UCBi0oAPI_RETURN UCBioAPI UCBioAPI_SC_RFFunction (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT8* pCmdBuff,
[IN] UCBioAPI_UINT16 nCmdLen,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultlLen,
[IN] UCBioAPI_UINT16 wLed);

Description:
If a card exists in the RF range, a command is transmitted and the result is returned within
5 seconds. The RF power must be switched on.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pCmaBuff:
The buffer pointer that stores commands to transmit.

nCmadLen:
The length of the buffer pointer that stores commands to transmit.

pResultBuff:
The buffer pointer to store the result value.

nResultLen:
The length of the result value.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 229 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

m UCBioAPI_SC_ReadSerial
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC ReadSerial (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultlLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, the applicable serial number is obtained within 5 seconds.
Since this command has the built-in function to switch the RF power on, it is not necessary
to call the UCBioAPI_SC_RFPowerOn function before the function call.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pResultBuff:
The buffer pointer to store the result value.

nResultlen:
The length of the result value.

wled:
It designates f the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 230 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

m UCBioAPI_SC_ReadBlock
Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_SC ReadBlock (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINTS BlockNum,

[IN] UCBioAPI_UINT8* KeyValue,
[OUT] UCBioAPI_UINT8* pResul tBuff,
[OUT] UCBioAPI_UINT16* nResultlLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, data in the designated block are loaded within 5 seconds.
The RF power must be switched on.

This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used for authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to read. The maximum value may vary depending on the
memory size of a card.

BlockNum.
The number of the block to read. It has a value ranging in 0~3.

KeyValue:
The 6 byte key value to use.

pResultBuff:
The buffer pointer to store the result value.

nResultLen:
The length of the result value.

Page 231 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 232 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_WriteBlock
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC WriteBlock (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINTS BlockNum,

[IN] UCBioAPI_UINT8* KeyValue,
[IN] UCBioAPI_UINT8* pData,
[IN] UCBioAPI_UINT16 wlLed);

Description:
If a card exists in the RF range, 16 byte data are recorded in the designated block within 5
seconds. The RF power must be switched on. This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to write on. The maximum value may vary depending on the
memory size of a card.

BlockNum.
The number of the block to read. It has a value ranging in 0 ~ 3.

KeyValue:
The 6 byte length key value to use.

pData:
The memory pointer that stores 16 byte data to write.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Page 233 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 234 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_ReadSector

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_ReadSector (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINTS8 AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINT8* KeyValue,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:
If a card exists in the RF range, data in the designated sector are loaded within 5 seconds.
The RF power must be switched on. This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to read. The maximum value may vary depending on the
memory size of a card.

KeyValue:
6 byte length key value to use.

pResultBuff:
The buffer pointer to store the result value.

nResultlen:
The length of the result value.

wled:

It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Page 235 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 236 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_WriteSector

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SC WriteSector (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINTS8 AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINT8* Keyvalue,
[IN] UCBioAPI_UINT8* pData,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, 48 byte length data are recorded in the designated sector
within 5 seconds. The RF power must be switched on. This function is a Mifare card related
function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to be written on. The maximum value may vary depending on
the memory size of a card.

KeyValue:
6 byte length key value to use.

pData:
The memory pointer that stores 48 byte data to write.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:
UCBioAPIERROR_NONE
UCBioAPIERROR_INVALID_HANDLE

Page 237 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

UCBioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBioAPIERROR_DEVICE_NOT_OPENED
UCBioAPIERROR_SC_FUNCTION_FAILED
UCBioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 238 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_ReadSectorFieldContent
Prototype:
UCBioAPI_RETURN UCBioAPI UCBiIoAPI_SC ReadSectorFieldContent (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS8 AuthMode,
[IN] UCBioAPI1_UINT8 StartSectorNum,
[IN] UCBioAPI_UINT8 EndSectorNum,

[IN] UCBioAPI_UINT8* KeyValue,
[OUT] UCBioAPI_UINT8* pResul tBuff,
[OUT] UCBioAPI_UINT16* nResultlLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, all data inside the designated sector range are loaded
within 5 seconds. The maximum allowed range is 10 sectors and the maximum data length
that can be obtained is 480 bytes. (48 Bytes * 10 Sectors = 480 Bytes)

The RF power must be switched on.

This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

StartSectorNum:
The starting number of sectors to read. The maximum value may vary depending on the
memory size of a card.

EndSectorNum:
The ending number of sectors to read. The maximum value may vary depending on the
memory size of a card.

KeyValue:
6 byte length key value to use.

pResultBuff:
The buffer pointer to store the result value.

Page 239 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

nResultLen:
The length of the result value.

wled:
It designates of the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 240 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_WriteSectorFieldContent
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_WriteSectorFieldContent (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS8 AuthMode,
[IN] UCBioAPI1_UINT8 StartSectorNum,
[IN] UCBioAPI_UINT8 EndSectorNum,

[IN] UCBioAPI_UINT8* KeyValue,
[IN] UCBioAPI_UINT8* pData,
[IN] UCBioAPI_UINT16 wlLed);

Description:

If a card exists in the RF range, values are written on all data inside the designated sector
range. The maximum allowed range is 10 sectors and the maximum data length that can
be obtained is 480 bytes. (48 Bytes * 10 Sectors = 480 Bytes)

The RF power must be switched on.

This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0x60) or
UCBIioAPI_SC_USE_KEY_B(0x61).

StartSectorNum:
The starting number of sectors to be written on. The maximum value may vary depending
on the memory size of a card.

EndSectorNum:
The ending number of sectors to be written on. The maximum value may vary depending
on the memory size of a card.

KeyValue:
The 6 byte length key value to use.

pData:
The memory pointer that stores 48 bytes data to write.

Page 241 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

wled:

It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 242 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_PreValue
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC PreValue (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINTS BlockNum,

[IN] UCBioAPI_UINT8* KeyValue,
[IN] UCBioAPI_UINT8* pData,
[IN] UCBioAPI_UINT16 wlLed);

Description:

If a card exists in the RF range, the designated block is switched to the Value mode and 4
byte pData value is written within 5 seconds.

If the pData value to be written is 0x00000000, a value as in next is written on the
applicable block. (0x00000000FFFFFFFFOOO00000FFFFFFFFOOFFOOFF)

The block switched to the Value mode this way can use Value mode functions such as
UCBioAPI_SC_ReadValue and UCBioAPI_SC_IncrementValue. For more detailed information
on the Value mode, refer to Using Smart Card in this document.

The RF power must be switched on.

This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0x60) or
UCBIioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to be written on. The maximum value may vary depending on
the memory size of a device.

BlockNum:
The number of the block to be written on. It has a value ranging in 0 ~ 3.

KeyValue:
6 byte length key value to use.

Page 243 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

pData:
The memory pointer that stores 4 byte data to write.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 244 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_ReadValue
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_ReadValue (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINTS BlockNum,

[IN] UCBioAPI_UINT8* KeyValue,
[OUT] UCBioAPI_UINT8* pResul tBuff,
[OUT] UCBioAPI_UINT16* nResultlLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, 4 byte value data in the designated block are loaded.

The RF power must be switched on and the designated block must be in the Value mode.
This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to read. The maximum value may vary depending on the
memory size of a card.

BlockNum.
The number of the block to read. It has a value ranging in 0 ~ 3.

KeyValue:
6 byte length key value to use.

pResultBuff:
The buffer pointer to store the result value.

nResultLen:
The length of the result value.

Page 245 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 246 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_IncrementValue
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC IncrementValue (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINTS BlockNum,

[IN] UCBioAPI_UINT8* KeyValue,
[IN] UCBioAPI_UINT8* pData,
[IN] UCBioAPI_UINT16 wlLed);

Description:

If a card exists in the RF range, 4 byte data in the designated block are increased by the
designated value within 5 seconds.

The RF power must be switched on and the designated block must be in the Value mode.
This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to be written on. The maximum value may vary depending on
the memory size of a card.

BlockNum:
The number of the block to be written on. It has a value ranging in 0 ~ 3.

KeyValue:
6 byte length key value to use.

pData:
The memory pointer that stores 4 byte value data to be increased.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.

Page 247 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 248 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_DecrementValue
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC DecrementValue (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINTS BlockNum,

[IN] UCBioAPI_UINT8* KeyValue,
[IN] UCBioAPI_UINT8* pData,
[IN] UCBioAPI_UINT16 wlLed);

Description:

If a card exists in the RF range, 4 byte data in the designated block is decreased by the
designated value.

The RF power must be switched on and the designated block must be in the Value mode.
This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0Ox60) or
UCBioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to be written on. The maximum value may vary depending on
the memory size of a device.

BlockNum:
The number of the block to be written on. It has a value ranging in 0 ~ 3.

KeyValue:
6 byte length key value to use.

pData:
The memory pointer that stores 4 byte value data to be decreased.

wled:
It designates if the result of failure/success is displayed on the LED of a device or not.

Page 249 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 250 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_WriteSectorTrailer

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SC WriteSectorTrailer (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINTS8 AuthMode,
[IN] UCBioAPI1_UINT8 SectorNum,
[IN] UCBioAPI_UINT8* Keyvalue,
[IN] UCBioAPI_UINT8* NewAccessBit,
[IN] UCBioAPI_UINT8* NewKeyA,
[IN] UCBioAPI_UINT8* NewKeyB,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, the sector trailer area in the designated sector is modified
within 5 seconds.

The sector trailer includes key A, access bits and key B of an applicable sector.
Success/Failure is determined according to access rights of an applicable sector.

The RF power must be switched on.

This function is a Mifare card related function.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

AuthMode:

It designates which key from Key A and Key B is used in authentication.

It can have the value of either UCBioAPI_SC_USE_KEY_A(0x60) or
UCBIioAPI_SC_USE_KEY_B(0x61).

SectorNum:
The number of the sector to be written on. The maximum value may vary depending on
the memory size of a card.

KeyValue:
6 byte length key value to use.

NewAccessBit:
4 byte length buffer pointer that stores new access bits.

NewKeyA:
6 byte length buffer pointer that stores new key A.

Page 251 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

NewKeyB:
6 byte length buffer pointer that stores new key B.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 252 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_RegA
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_ReqA (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a type A card exists in the RF range, ATQ is obtained from the card within 5 seconds.
The RF power must be switched on.

This function is a function related to [SO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pResultBuff:
The buffer pointer to store the result value.

nResultlLen:
The length of the result value.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 253 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_WupA
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_WupA (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a type A card exists in the RF range, ATQ is obtained from the card within 5 seconds.

It is identical to the UCBioAPI_SC_RegA function but there is a difference in that a card in
halt state responds.

The Rd power must be switched on.

This function is a function related to [SO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pResultBuff:
The buffer pointer to store the result value.

nResultlLen:
The length of the result value.

wled:
It designated if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 254 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC Select
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_Select (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

With ATQ obtained from a type A card, if a type A card exists in the RF range, the SAK
value and UID value of the card are obtained from the card within 5 seconds.

The length of SAK is 1 byte and the length of UID is variable.

The RF power must be switched on.

This function is a function related to [SO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pResultBuff:
The buffer pointer to store the result value.
SAK(1lbyte) + UID are stored sequentially.

nResultLen:
The length of the result value.

wled:
It designates of the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBiIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 255 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W UCBioAPI_SC_HaltA
Prototype:
UCBioAPI_RETURN UCBiIoAPI UCBioAPI_SC_HaltA (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT16 wLed);

Description:

The type A card in the select state is switched to the halt state.

The card that became halt state this way does not respond to the UCBioAPI_SC_RegA
function but it responds only to the UCBioAPI_SC_WupA function.

The RF power must be switched on.

This function is a function related to [SO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 256 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W UCBioAPI_SC_Rats

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_Rats (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINTS fsdi,
[IN] UCBioAPI_UINTS8 cid,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a card exists in the RF range, the ATS (Answer To Select) value of the card is obtained
from the card within 5 seconds. ATS can be obtained when the SAK value is 0x2X
(ISO14443-4 supported).

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

Fsdi:
The maximum size of the frame that PCS can receive can be determined through the
setting of FSDI (Frame Size for proximity coupling Device Integer). (Value ranging in 0x00 ~
OxOF)

cid:
It is possible to call an individual card selectively through CID (Card Identifier). (Value
ranging in 0x00 ~ OxOF)

pResultBuff:
The buffer pointer to store the result value.

nResultLen:
The length of the result value.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.

If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

Page 257 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

UCBioAPIERROR_NONE

UCBioAPIERROR _INVALID_HANDLE
UCBioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBioAPIERROR_DEVICE_NOT_OPENED
UCBioAPIERROR_SC_FUNCTION_FAILED
UCBioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 258 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_PpsRequest
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC PpsRequest (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS cid,
[IN] UCBioAPI_UINT8 ppsO,
[IN] UCBioAPI_UINT8 ppsi,

[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a type A card exists in the RF range, the PPSS value of the card is obtained from the
card within 5 seconds. If a parameter that can be changed through the ATS value, it can be
used by PCD. That is, if a higher Baud rate is supported at DS and DR which are selected
parameters in ATS, the Baud rate for both directions can be increased independently by 2,
4, 8 times.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

cia:
The CID (Card Identifier) value selected during rats call. (Values ranging in 0x00 ~ 0xOF)

pps0:
It represents if PPS1 is transmitted or not.

It represents transmission if it is Ox11. It represents no transmission if it is 0x01.

ppsi:
Upper 2 bytes mean DRI and lower 2 bytes mean DS.

pResultBuff:
The buffer pointer to store the result value.

nResultLen:
The length of the result value.

wled:

Page 259 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

It designates of the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBioAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 260 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_BlockFormat
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_BlockFormat (
[IN] UCBioAPI_HANDLE hHandle,

[IN] UCBioAPI_UINTS pch,

[IN] UCBioAPI_UINT8 CidorNad,
[IN] UCBioAPI_UINT8* inf,

[IN] UCBioAPI_UINT8 inflLen,

[OUT] UCBioAPI_UINT8* pResul tBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a type A card exists in the RF range, data are loaded from the card within 5 seconds.
Command related to block exchange in the data layer (T=1).

The RF power must be switched on.

This function is a function related to 1SO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pch.

It means PCB (Protocol Control Byte). (Required)

Information required in controlling data transmission is available. It is divided into I — Block,
R — Block, S — Block. I — Block is used to read data and PCB value is transmitted by
toggling Bit0 as in 0x0A, 0x0B, Ox0A.

CidOrNad:
CID or NAD value designated at PICC with Rats. (Optional)

inf:
It means INF (Information Field).
To read an applicable file, a special format must be known.

infLen:
The length of inf.

pResultBuff:
The buffer pointer to store the result value.

Page 261 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

nResultlLen:
The length of the result value.

wled:
It designates of the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBioAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBioAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 262 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC _Deselect

Prototype:

UCBioAPI_RETURN UCBioAPI UCBioAPI_SC Deselect (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINTS8 CidOrNad,
[OUT] UCBioAPI_UINT8* pResultBuff,
[OUT] UCBioAPI_UINT16* nResultLen,
[IN] UCBioAPI_UINT16 wLed);

Description:

If a type A card exists in the RF range, the card is deactivated within 5 seconds.

If an active state card is deselected, the card does not respond to BlockFormat as long as
it is within the RF range. The RF power must be switched on.

This function is a function related to ISO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

CidOrNad:
CID or NAD value designated at PICC with Rats.

pResultBuff:
The buffer pointer to store the result value.

nResultLen:
The length of the result value.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBIioAPIERROR_INVALID_HANDLE
UCBiIoAPIERROR_FUNCTION_NOT_SUPPORTED
UCBIioAPIERROR_DEVICE_NOT_OPENED
UCBiIoAPIERROR_SC_FUNCTION_FAILED
UCBIioAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIoAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 263 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B UCBioAPI_SC_TypeA_ActiveState
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC TypeA_ActiveState (
[IN] UCBioAPI_HANDLE hHandle,
[OUT] UCBioAPI_UINT8* pResul tBuff,
[OUT] UCBioAPI_UINT16* nResultlLen,
[IN] UCBioAPI_UINT16 wLed) ;

Description:

If a type A card exists in the RF range, ATS is obtained by implementing RegA, Select and
Rats simultaneously within 5 seconds.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Parameters:
hHandle:
The Handle value of UCBioAPI SDK.

pResultBuff:
The buffer pointer to store the result value.

nResultlLen:
The length of the result value.

wled:
It designates if the result of success/failure is displayed on the LED of a device or not.
If UCBioAPL_SC_LED_TOGGLE(1) is set, the LED of a device changes to blue upon success.

Returns:

UCBioAPIERROR_NONE
UCBiIoAPIERROR_INVALID_HANDLE
UCBIioAPIERROR_FUNCTION_NOT_SUPPORTED
UCBiIoAPIERROR_DEVICE_NOT_OPENED
UCBIioAPIERROR_SC_FUNCTION_FAILED
UCBiIoAPIERROR_SC_NOT_SUPPORTED_DEVICE
UCBIioAPIERROR_SC_NOT_SUPPORTED_FIRMWARE

Page 264 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.API Reference for COM

This chapter describes properties and methods to use a COM module, UCBioBSPCOM.dII.

6.1. UCBioBSP Object

As the main object to use UCBioBSPCOM.dII, it provides the version information and basic setting
of UCBioBSP SDK and operates as the default object to get various function-by-function child
objects. Therefore, to use SDK, this object must be declared.

6.1.1. Methods
Various methods of UCBioBSP Object are described.

W SetSkinResource
Prototype:
HRESULT SetSkinResource(BSTR bszSkinPath);

Description:

A skin for the user interface of UCBioAPI SDK is changed.

UCBIioAPI SDK uses a skin type UI for the screen used in registration and authentication.
Therefore, to use Ul in other languages and forms instead of the Ul provided by UCBioBSP
SDK, a user defined skin can be created and used.

Parameters:
bszSkinPath:
The full path of the skin file to be changed.

Related properties:
ErrorCode, ErrorDescription

Page 265 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.1.2.

Properties

Various properties of UCBioBSP Object are described.

H ErrorCode

Prototype:
[ReadOnly] 1long ErrorCode;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored.

The value of 0 means success and all other values mean failure.

Errors occurred during the setting of the method and property of a child object can also
be obtained using this value.

B ErrorDescription

Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values on ErrorCode in character string.

As in ErrorCode, errors occurred during the setting of the method and property of a child
object can also be obtained using this value.

B Device

Prototype:
[ReadOnly] VARIANT Device;

Description:

The interface of the object that has a collection of device relate commands is obtained.
This interface is obtained to perform functions such as start and end of device use, device
selection and option value setting. For more detailed information, refer to the IDevice

description.

W Extraction

Prototype:
[ReadOnly] VARIANT Extraction;

Page 266 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

The interface related to a function to extract special features after obtaining a fingerprint
is obtained. To perform a function related to fingerprint acquisition and registration, this
interface is obtained and used. For more detailed information, refer to the IExtraction

description.

m Matching
Prototype:
[ReadOnly] VARIANT Matching;

Description:

The interface related to a function to perform authentication using fingerprint data is
obtained. To use perform a function related to fingerprint authentication, this interface is
obtained and used. For more detailed information, refer to the IMatching description.

B FPData
Prototype:
[ReadOnly] VARIANT FPData;

Description:

The interface related to a function to obtain or convert fingerprint data is obtained. To
convert fingerprint data into a different type, this function is obtained and used. For more
detailed information, refer to the IFPData description.

B FPImage
Prototype:
[ReadOnly] VARIANT FPImage;

Description:

The interface related to a function to obtain fingerprint data as image or store them as
image file is obtained. To convert fingerprint data into image, this interface is obtained
and used. For more detailed information, refer to the IFPImage description.

W FastSearch
Prototype:
[ReadOnly] VARIANT FastSearch;

Page 267 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

The interface related to the FastSearch function to perform 1:N high-speed authentication
is obtained. To use a function related to FastSearch related DB management and
authentication implementation, this interface is obtained and used. For more detailed

information, refer to the IFastSearch description.

® SmartCard
Prototype:
[ReadOnly] VARIANT SmartCard;

Description:
The interface related to the smart card is obtained. To use a function to store data at the
smart card and load data, this function is be obtained and used. For more detailed

information, refer to the ISmartCard description.

B CheckValidityModule
Prototype:
[ReadOnly] BOOL CheckValidityModule;

Description:

The validity of UCBioBSP SDK is examined and that value is kept.

If this value is TRUE, there is no problem with validity. But if this value is FALSE, there is a
possibility that the UCBioBSPdIl file, a core module of SDK, may have been changed or
modified and it requires verification.

B MajorVersion
Prototype:
[ReadOnly] BSTR MajorVersion;

Description:
The major version number of UCBioBSP SDK is stored as character string. For example, if
the version of SDK is v3.1000, “3" is placed in the major version location and "1000" is

placed in the minor version location.

B MinorVersion
Prototype:

Page 268 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

[ReadOnly] BSTR MinorVersion;

Description:
The minor version number of UCBioBSP SDK is stored. For example, if the version of SDK
is v3.1000, "3" is placed in the major version location and "1000" is placed in the minor

version location.

B BuildNumber
Prototype:
[ReadOnly] BSTR Bui IdNumber;

Description:

The build number of UCBioBSP SDK is stored as character string. In general, this value is
identical to the lower 1 byte value of MinorVersion.

® MaxFingersForEnroll

Prototype:

[Read/Write] long MaxFingersForEnroll;

Description:

The maximum number of fingers allowed for registration during fingerprint registration is
designated.

For example, if this value is set as 2, only up to 2 fingers can be registered when
registering fingerprints using the Enroll method of IExtraction.
The default value is 10.

Related methods:
IExtraction.Enroll

B NecessaryEnrolINum

Prototype:

[Read/Write] long NecessaryEnrol INum;

Description:

The minimum number of fingers required for registration during fingerprint registration is
designated.

This value must be less than or equal to the MaxFingersForEnroll value.
For example, if this value is set as 2, at least 2 fingers need to be registered to complete a

Page 269 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

registration process when registering fingerprints using the Enroll method of IExtraction.
The default value is 2.

Related methods:
IExtraction.Enroll

B SamplesPerFinger
Prototype:
[Read/Write] long SamplesPerFinger;

Description:
The number of samples stored per finger during fingerprint registration is designated.
Currently, it is fixed at 2 and modification is not allowed.

B DefaultTimeout
Prototype:
[Read/Write] long DefaultTimeout;

Description:

The default maximum time for which a device operates to acquire a fingerprint during
fingerprint authentication and registration is designated in ms unit. Timeout can be set
separately later during a function call but this value is used if -1 is set now.

The default value is 10000 (10 seconds).

Related methods:
[Extraction.Enroll, I[Extraction.Capture, IMatching.Verify

B SecurityLevelForEnroll / SecurityLevelForVerify / SecurityLevelForldentify

Prototype:

[Read/Write] long SecuritylLevelForEnroll;
[Read/Write] long SecuritylLevelForVerify;
[Read/Write] long SecuritylLevelForldentify;
Description:

An authentication security level to be used in fingerprint registration / authentication / 1:N
authentication can be set for each one of them. Allowed values are shown below.

1 - LOWEST

Page 270 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

- LOWER

- LOW

- BELOW_NORMAL
NORMAL

- ABOVE_NORMAL
- HIGH

- HIGHER

- HIGHEST

© 00N 0O~ WDN
|

As a default value, Enroll/Verify has 5 and Identify has 6.

Related methods:
[Extraction.Enroll, IMatching.Verify, IMatching.VerifyMatch

B WindowStyle
Prototype:
[Read/Write] long WindowStyle;

Description:

The type of displaying a Window on the screen can be designated. It determines if a
Window is launched as pop-up type or only a fingerprint is displayed in an area of
another Window.

0 - POPUP
1 - INVISIBLE

If POPUP is designated, a new Window is launched generally to launch fingerprint
registration and authentication. But if INVISIBLE can be designated for the Capture method
of IExtraction and Verify method of IMatching, then fingerprint input or authentication can
be performed while not displaying Ul on the screen. Also, if INVISIBLE is designated like
this, fingerprint image is allowed to be displayed on that Window assuming that the
FingerWnd property value is not NULL.

Related methods:
[Extraction.Enroll, I[Extraction.Capture, IMatching.Verify, IDevice.Adjust

B WindowOption
Prototype:
[Read/Write] BOOL WindowOption(long Option);

Page 271 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

The flag for the type of displaying a Window on the screen can be designated. Settings
such as not allowing a fingerprint to be displayed or removing the Welcome page during
fingerprint registration can be made. These three flags can be designated repeatedly. A
value shown in below is designated as the option value, and the TRUE/FALSE value is
designated or the value is obtained.

0x00010000 — NO_FPIMG
0x00020000 — NO_WELCOME
0x00040000 — NO_TOPMOST

0x00010000 - NO_FPIMG:

When fingerprint image is preferred not to be displayed on the screen for security reasons,
this style is designated.

0x00020000 - NO_WELCOME:

The first page "Welcome page” from fingerprint registration Uls is not displayed.
0x00040000 - NO_TOPMOST:

All Uls are currently to be opened on top of others. To open it as a general Window type,
this style is designated.

Related methods:
[Extraction.Enroll, IExtraction.Capture, IMatching.Verify, IDevice.Adjust

B ParentWnd
Prototype:
[Read/Write] long ParentWnd;

Description:

When a Window for fingerprint registration and authentication is launched, the Handle of
the parent Window that is the base of that Window is designated. The default value is
NULL.

Related methods:
[Extraction.Enroll, I[Extraction.Capture, IMatching.Verify, IDevice.Adjust

B FingerWnd
Prototype:
[Read/Write] long FingerWnd;

Page 272 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:
If WindowsStyle is set as INVISIBLE(1), the Handle of a specific Window to draw fingerprint
image is designated. The default value is NULL.

Related methods:
[Extraction.Capture, IMatching.Verify

B CaptionMsg
Prototype:
[Read/Write] BSTR CaptionMsg;

Description:
When a user selects CANCEL during fingerprint registration, a message to be displayed on
the caption of a Window to display the cancel message is designated.

Related methods:
IExtraction.Enroll

B CancelMsg
Prototype:
[Read/Write] BSTR CancelMsg;

Description:

When a user selects CANCEL during fingerprint registration, a cancel message to be
displayed is designated.

Related methods:

IExtraction.Enroll

B FPForeColor / FPBackColor

Prototype:

[Read/Write] BSTR FPForeColor;
[Read/Write] BSTR FPBackColor;
Description:

The fingerprint color and background value of fingerprint image to be displayed on the
screen are designated as RGB values in character string.

Page 273 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

If it is designated as “FFFFFF", each 2 byte can be considered to be an RGB value in HEX.

Related methods:
I[Extraction.Enroll, IExtraction.Capture, IMatching.Verify

W DisableFingerForEnroll
Prototype:
[Read/Write] BOOL DisableFingerForEnrol I (long nFingeriD);

Description:

Fingers to be prohibited from registration during fingerprint registration can be designated.
It is the array value that can store 10 fingers in total, and the registration status for each
finger is designated by 0 or 1.

It increases from index number 1 in the order of thumb, index, middle, ring and little of
the right hand and from index number 6 in the order of thumb, index, middle, ring and
little of the left hand.

For example, to prohibit the left hand thumb from registration, designate it as shown
below.

objUCBioBSP.DisableFingerForEnrol1(6) = True;

But, in the fingerprint modification mode, registration status for an already registered
finger is displayed even if it is prohibited from registration.

Related methods:
IExtraction.Enroll

Page 274 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.2. IDevice Interface

The interface of an object with a collection of device related commands. To perform functions such
as starting and ending of device use, device selection and option value setting, this interface is
obtained and used.

6.2.1. Methods
Various methods of IDevice interface are described.

H Open
Prototype:
HRESULT Open(long nDevicelD);

Description:
A desired device is opened and initialized.

Parameters:
nDevicelD:
The ID of a device to be opened. Refer to UCBioAPL_DEVICE_ID.

Related properties:
ErrorCode, ErrorDescription
OpenedDevicelD, ImageWidth, ImageHeight, Brightness, Contrast, Gain

M Close
Prototype:
HRESULT Close(long nDevicelD);

Description:
An opened device is closed and its use is terminated.

Parameters:
nDevicelD:
The ID of a device to be closed. Refer to UCBioAPI_DEVICE_ID.

Related properties:
ErrorCode, ErrorDescription

Page 275 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B Enumerate
Prototype:
HRESULT Enumerate();

Description:
A list is created by searching all devices installed in the current system. The created list can

be obtained through a related property.

Related properties:
ErrorCode, ErrorDescription
EnumCount, EnumDevicelD, EnumDeviceNamelD, EnumDevicelnstance, EnumDeviceName,

EnumDeviceDescription, EnumDeviceDIl, EnumDeviceSys, EnumDeviceAutoOn,
EnumDeviceBrightness, EnumDeviceContrast, EnumDeviceGain

B Adjust
Prototype:
HRESULT Adjust(Q);

Description:
A Ul that adjusts the brightness of a currently opened device is launched. Since currently
supported devices internally undergo the automatic brightness adjustment procedure, this

function can not be used.

Related properties:
ErrorCode, ErrorDescription

Page 276 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.2.2. Properties
Various properties of IDevice interface are described.

m ErrorCode
Prototype:
[ReadOnly] 1long ErrorCode;

Description:
Values for errors occurred during the setting of executed methods and properties are

stored.
The value of 0 means success and all other values mean failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:
Values on errors occurred during the setting of executed methods and properties are

stored as character string.
It is used to output error values on ErrorCode as character string.

B EnumCount
Prototype:
[ReadOnly] 1long EnumCount;

Description:
The number of devices searched after calling the IDevice.Enumerate method is stored.

It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B EnumDevicelD

Prototype:
[ReadOnly] 1long EnumDevicelD(long nilndex);

Description:
The ID list of devices searched after calling the IDevice.Enumerate method is stored.

Page 277 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

nlndex can have a value ranging in 0 ~ (EnumCount -1).
It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B EnumDeviceNamelD

Prototype:
[ReadOnly] 1long EnumDeviceNamelD(long nindex);

Description:

The name ID list of devices searched after calling the IDevice.Enumerate method is stored.
nindex can have a value ranging in 0 ~ (EnumCount -1).

It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B Enumlnstance

Prototype:
[ReadOnly] Ilong EnumDevicelnstance(long nindex);

Description:
The instance list of devices searched after calling the IDevice.Enumerate method is stored.

Since device-by-device instance is not currently supported, it is not used.
It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B EnumDeviceName

Prototype:
[ReadOnly] BSTR EnumDeviceName(long nlndex);

Description:

The name list of devices searched after calling the IDevice.Enumerate method is stored.
nindex can have a value ranging in 0 ~ (EnumCount -1).

It is used only after the IDevice.Enumerate method is called.

Page 278 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Related methods:
IDevice.Enumerate

B EnumDeviceDescription
Prototype:
[ReadOnly] BSTR EnumDeviceDescription(long nindex);

Description:

The description list of devices searched after calling IDevice.Enumerate method is stored.
nindex can have a value ranging in 0 ~ (EnumCount -1).

It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B EnumDeviceDIl / EnumDeviceSys

Prototype:
[ReadOnly] BSTR EnumDeviceDl1(long nindex);
[ReadOnly] BSTR EnumDeviceSys(long nindex);
Description:

The DLL name list and Sys name list of devices searched after calling the
IDevice.Enumerate method is stored.

nindex can have a value ranging in 0 ~ (EnumCount -1).

It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B EnumDeviceAutoOn
Prototype:
[ReadOnly] 1long EnumDeviceAutoOn(long nindex);

Description:

The list of values to determine if devices searched after calling the IDevice.Enumerate
method support AutoOn is stored. Currently, values for AutoOn are not supported.

nlndex can have a value ranging in 0 ~ (EnumCount -1).

Page 279 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

It is used only after the IDevice.Enumerate method is called.

Related methods:
IDevice.Enumerate

B EnumDeviceBrightness / EnumDeviceContrast / EnumDeviceGain

Prototype:

[ReadOnly] long EnumDeviceBrightness(long nindex);
[ReadOnly] 1long EnumDeviceContrast(long nlndex);
[ReadOnly] Ilong EnumDeviceGain(long nlndex);
Description:

The brightness / contrast / gain value list of devices searched after calling the
IDevice.Enumerate method is stored.

nindex can have a value ranging in 0 ~ (EnumCount -1).

It is used only after the IDevice.Enumerate method is called.

Related methods:

IDevice.Enumerate

B OpenedDevicelD
Prototype:
[ReadOnly] Ilong OpendedDevicelD;

Description:
The ID of a currently opened device is stored.

B DeviceNamelD / Devicelnstance

Prototype:

[ReadOnly] Ilong DeviceNamelD(long nDevicelD);
[ReadOnly] 1long Devicelnstance(long nDevicelD);
Description:

The device name ID and device instance are obtained from a given nDevicelD.
Each of values represents the lower 2 bytes and upper 2 bytes of nDevicelD.
Since device-by-device instance is not currently supported, it is not used.

Page 280 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

N DevicelD
Prototype:
[ReadOnly] long DevicelD(long nNamelD, long nlnstance);

Description:
The device ID is obtained using given nNamelD and nInstance.
Since device-by-device instance is not currently supported, it is not used.

B ImageWidth / ImageHeight

Prototype:
[ReadOnly] 1long ImageWidth(long nDevicelD);
[ReadOnly] long ImageHeight(long nDevicelD);
Description:

The image size of the device is obtained using the given nDevicelD.
nDevicelD must be identical to a currently opened device ID and it must be used while a

device is opened.

Related methods:
IDevice.Open, IDevice.OpenedDevicelD

B Brightness / Contrast / Gain

Prototype:

[Read/Write] long Brightness(long nDevicelD);
[Read/Write] long Contrast(long nDevicelD);
[Read/Write] long Gain(long nDevicelD);
Description:

The brightness / contrast / gain value of the device is obtained or designated using the

given nDevicelD.
nDevicelD must be identical to a currently opened device ID and it must be used while a

device is opened.
Related methods:

IDevice.Open, IDevice.OpenedDevicelD

W IsFingerExisted
Prototype:

Page 281 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

[ReadOnly] BOOL IsFingerExisted;

Description:

If a finger is placed on a currently opened device is examined and the examination result
is stored.

An examination starts at the time of this property call.

It must be used while a device is opened.

Related methods:
IDevice.Open

Page 282 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.3. IExtraction Interface

The interface related to a function that extracts special features by obtaining fingerprint image. To
perform a function related to fingerprint acquisition and registration, this interface is obtained and
used.

6.3.1. Methods
Various methods of the IExtraction interface are described.

W Capture
Prototype:
HRESULT Capture([in, optional]long nPurpose);

Description:

FIR Handle is created by acquiring one fingerprint from a currently opened device. Data
acquired this way can be obtained using FIR or TextFIR property. Since this method uses a
device, a device must be opened before use.

Parameters:
nPurpose:
The purpose value of FIR data can be designated. Allowed values are shown below.

- VERIFY

- IDENTIFY

- ENROLL
ENROLL_FOR_VERIFICATION_ONLY

- ENROOL_FOR_IDENTIFICATION_ONLY
- AUDIT

16 - UPDATE

o O~ WDN PP
|

Each of values is used only for reference on FIR data and it does not have any effect on
authentication. If this value is designated as Enroll related purpose, it operates in the same
way as the Enroll method.

For more detailed description, refer to the UCBioAPI_FIR_PURPOSE definition.

Related properties:
ErrorCode, ErrorDescription
FIR, FIRLength, TextFIR

Related methods:
[Device.Open

Page 283 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

H Enroll
Prototype:
HRESULT Enrol I (VARIANT payload, [in, optional]VARIANT storedFIR);

Description:

FIR data are created by acquiring fingerprints of one person from a currently opened
device. Since fingerprints are from one person, fingerprints for several fingers are
registered at the same time and one FIR data is created from them. Fingerprints registered
this way can be obtained using FIR or TextFIR property. Since this method uses a device, a
device must be opened before use.

Parameters:

payload:

Payload data to be stored at FIR data to be created. They can be either character string or
binary data.

This value can have NULL. If NULL is designated, the Payload value of existing data is kept.

storedFIR:
To modify existing FIR data, this value is designated. If this value is not designated, a new
fingerprint is entered for input.

Related properties:
ErrorCode, ErrorDescription
FIR, FIRLength, TextFIR

Related methods:
IDevice.Open

Page 284 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.3.2. Properties
Various properties of the IExtraction interface are described.

H ErrorCode

Prototype:

[ReadOnly] 1long ErrorCode;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored.

The value of 0 represents success and all other values represent failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values for ErrorCode as character string.

m FIR
Prototype:
[ReadOnly] VARIANT FIR;

Description:

FIR data acquired after calling the Capture or Enroll method are obtained as binary stream
data.

The length of data are stored at the FIRLength property.

FIR format to obtain must be designated in advance at the FIRFormat property.

Related methods:
Capture, Enroll

Related properties:
FIRLength, FIRFormat

H FIRLength

Page 285 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Prototype:

[ReadOnly] 1long FIRLength;

Description:

The length of binary stream data acquired after calling the Capture or Enroll method is
obtained.

Related methods:
Capture, Enroll

Related properties:
FIR

B TextFIR
Prototype:
[ReadOnly] BSTR TextFIR;

Description:

FIR data acquired after calling the Capture or Enroll method are obtained as character
string in text string type. Since it is a character string, its length is not separately
designated.

FIR format to obtain must be designated in advance at the FIRFormat property.

Related methods:
Capture, Enroll

Related properties:
FIRFormat

B FIRFormat
Prototype:
[Read/Write] long FIRFormat;

Description:

The data format of FIR to obtain is designated. When the structure of FIR data changes
later, this format value changes and the lower compatibility can be maintained. Only the
STANDARD(1) format is currently supported.

Related properties:

Page 286 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

FIR, TextFIR

Page 287 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.4. IMatching Interface

The interface related to a function that performs authentication using fingerprint data. To perform a
function relates to fingerprint authentication, this interface is obtained and used.

6.4.1. Methods
Various methods of the IMatching interface are described.

m VerifyMatch
Prototype:
HRESULT VerifyMatch (VARIANT processedFIR, VARIANT storedFIR);

Description:

Two previously acquired FIR data are compared each other and the authentication result is
obtained. Upon successful authentication, the Payload value stored at FIR data for
registration can also be obtained.

Parameters:

processedFIR:

FIR data requiring authentication. They can be either FIR data in binary stream type or
TextFIR data in text string type. Either one of them can be used without making a
difference.

storedFIR:

FIR data for registration requiring authentication. They can be either FIR data in binary
stream type or TextFIR data in text string type. Either one of them can be used without
making a difference.

Related properties:
ErrorCode, ErrorDescription
MatchingResult, IsPayloadExisted, Payload, PayloadLength, TextPayload

m Verify
Prototype:
HRESULT Verify (VARIANT storedFIR);

Description:

Previously acquired FID data and fingerprint data entered in real time from the current
device are compared and the authentication result is obtained. Upon successful
authentication, the Payload value stored at FIR data for registration can also be obtained. It

Page 288 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

is nearly identical to the VerifyMatch method but there is a difference in that
authentication is implemented by directly accepting a fingerprint in real time.

That is, it can be considered that the IExtraction.Capture method and the
IMathing.VerifyMatch method are internally implemented at the same time. Since this
function uses a device, a device must be opened before use.

Parameters:
storedFIR:
FIR data for registration requiring authentication. They can be either FIR data in binary

stream type or TextFIR data in text string type. Either one of them can be used without
making a difference.

Related properties:
ErrorCode, ErrorDescription
MatchingResult, IsPayloadExisted, Payload, PayloadLength, TextPayload

Related methods:
IDevice.Open

Page 289 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.4.2. Properties
Various properties of the IMatching interface are described.

m ErrorCode
Prototype:
[ReadOnly] 1long ErrorCode;

Description:
Values for errors occurred during the setting of executed methods and properties are

stored.
The value of 0 represents success and all other values represent failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values for ErrorCode as character string.

B MatchingResult
Prototype:
[ReadOnly] BOOL MatchingResult;

Description:
After the Verify or VerifyMatch method is called, the result for that authentication is stored.

Related methods:
Verify, VerifyMatch

W IsPayloadExisted

Prototype:
[ReadOnly] BOOL IsPayloadExisted;

Description:
If authentication succeeds after calling the Verify or VerifyMatch method, Payload stored

inside FIR can be obtained and the value to determine if the Payload value exists is stored.

Page 290 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Related methods:
Verify, VerifyMatch

Related properties:
Payload, PayloadLength, TextPayload

H Payload
Prototype:
[ReadOnly] VARIANT Payload;

Description:

If authentication succeeds after calling the Verify or VerifyMatch method, Payload stored
inside FIR can be obtained and that Payload value is stored as binary stream type.

The length of binary stream data is stored in the PayloadLength property.

Related methods:
Verify, VerifyMatch

Related properties:
PayloadLength

m PayloadLength
Prototype:
[ReadOnly] Ilong PayloadlLength;

Description:
If authentication succeeds after calling the Verify or VerifyMatch method, Payload stored
inside FIR can be obtained and the length for Payload data in binary stream type is stored.

Related methods:
Verify, VerifyMatch

Related properties:
Payload

B TextPayload
Prototype:

Page 291 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

[ReadOnly] BSTR TextPayload;

Description:
If authentication succeeds after calling the Verify or VerifyMatch method, Payload stored
inside FIR can be obtained and the Payload value is stored as character string in text string

type.

Related methods:
Verify, VerifyMatch

Page 292 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.5. IFPData Interface

The interface related to a function to obtain or convert fingerprint data. To convert fingerprint data
into a different type, this interface is obtained and used.

6.5.1. Methods
Various methods of the IFPData interface are described.

W Export
Prototype:
HRESULT Export (VARIANT storedFIR, nDestFPDataType);

Description:

Desired type template information is obtained from FIR data. After calling the method,
each of template informations can be obtained using various properties.

Since FIR data generally hide internal data through encryption, template-by-template
information is not known. Therefore, to process data template-by-template as in other
application programs ad in the terminal, data need to be converted using this method
before use.

Parameters:

storedFIR:

FIR data requiring conversion. They can be either FIR data in binary stream type or TextFIR
data in text string type. Either one of them can be used without making a difference.

nDestFPDatalype:
The type of template data to convert is designated.
For allowed values, refer to the UCBioAPI_TEMPLATE_TYPE definition.

Related properties:
ErrorCode, ErrorDescription
TotalFingerCount, SampleNumber, FingerID, FPSampleData, FPSampleDatalLength

Page 293 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

H Import

Prototype:

HRESULT Import (
BOOL biInitialize,
long nFingerliD,
long nPurpose,
long nSrcFPDataType,
long nFPDataSize,
VARIANT FPDatal,
[in, optional] VARIANT FPData2?);

Description:

FIR data are created using one template information or several numbers of template
informations in a specific type.

After calling the method, FIR with template information can be obtained through various
properties.

In general, UCBioBSP SDK does not allow direct authentication using template and all data
are required to be converted to FIR type before use. Therefore, it is necessary to convert
data into FIR data using this method.

Data created this way can be obtained using FIR or TextFIR property.

Parameters:

binitialize

If FIR data are initialized and created or not is designated.

If this value is False, template data added now continue to be added to internally created
FIR data and one FIR data with several numbers of template data is created. However, if
this value is True, all existing FIRs are deleted and new FIR is created.

nfingeriD:
The finger ID information of the template to be added. For related values, refer to
UCBioAPI_FINGER_ID.

nPurpose:

The purpose value of FIR data to convert can be designated.

These values are used only for reference on FIR data and they do not have any effect on
authentication. For more detailed description, refer to the UCBioAPI _FIR_PURPOSE
definition.

nSrcFPDatalype:
The type information of the template to be added. For related values, refer to
UCBioAPI_TEMPLATE_TYPE.

Page 294 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

FPDatal:
Template data to be added. (Binary stream data)

FPDataz:

The second template data of a finger to be added. (Binary stream data)

It is not necessary to designate this value as option. In such a case, the value of
SamplesPerFinger becomes 1 internally for FIR.

Related properties:
ErrorCode, ErrorDescription
FIR, FIRLength, TextFIR

Page 295 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B CreateTemplate
Prototype:
HRESULT CreateTemplate (
VARIANT capturedFIR,
VARIANT storedFIR,
[in, optional] VARIANT payload);

Description:

A new FIR Handle is created by merging new FIR data with existing FIR data or replacing
with new FIR data. Also, it is used when existing FIR is replaced with new Payload. Data
created this way can be obtained using FIR or TextFIR property.

Parameters:

capturedFiR:

FIR data to newly replace. They can be either FIR data in binary stream type or TextFIR on
text string type. Either one of them can be used without making a difference.

storedFIR:

FIR data to be used as a base. They can be either FIR data in binary stream type or TextFIR
in text string type. Either one of them can be used without making a difference.

If this value is Null, FIR data are created based in this value.

If this FIR data include data of right hand thumb, index and middle and capturedFIR data
to newly replace include data of right hand thumb and left hand thumb, created FIR data
include right hand index and middle in storedFIR data and right hand thumb and left hand
thumb in capturedFIR data. That is, new data are created by adding and modifying new
data to existing data.

payload:

Payload data to be stored at FIR data to be created. They can be either Payload data in
binary stream type or TextPayload data in text string type. Either one of them can be used
without making a difference. This value may not be designated as option. If it is not
designated, the Payload value of existing data is kept.

Related properties:
ErrorCode, ErrorDescription
FIR, FIRLength, TextFIR

Page 296 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.5.2. Properties
Various properties of the IFPData interface are described.

W ErrorCode
Prototype:
[ReadOnly] 1long ErrorCode;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored.

The value of 0 represents success and all other values represent failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values for ErrorCode as character string.

B TotalFingerCount
Prototype:
[ReadOnly] 1long TotalFingerCount;

Description:
The total number of fingers of converted FIR is stored.
It is used only after the Export method is called.

Related methods:
Export

Related properties:
FingerID

W FingerID
Prototype:
[ReadOnly] long FingerID(long nindex);

Page 297 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

The finger ID information of converted FIR is stored as array.
nindex can have a value ranging in 0 ~ (TotalFingerCount — 1).
It is used only after the Export method is called.

Related methods:
Export

Related properties:
FPSampleDatalLength, FPSampleData

B SampleNumber
Prototype:
[ReadOnly] 1long SampleNumber ;

Description:

The number of finger-by-finger templates of converted FIR is stored. The value of either 1
or 2 is stored.

It is used only after the Export method is called.

Related methods:
Export

Related properties:
FPSampleDatalLength, FPSampleData

B FPSampleData

Prototype:
[ReadOnly] VARIANT FPSampleData(
long nFingerliD,
long SampleNum);
Description:

Binary stream data of finger-by-finger templates of converted FIR are obtained.
nFingerID and SampleNum can be obtained using FingerID and SampleNumber property.
It is used only after the Export method is called.

Parameters:

Page 298 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

nfingerlD:
The ID of a finger to be obtained.

nSampleNumber:
The number of a sample to be obtained. The value of either 0 or 1 is used.

Related methods:
Export

Related properties:
FingerID, SampleNumber, FPSampleDatalLength

B FPSampleDataLength

Prototype:

[ReadOnly] 1long FPSampleDatalLength(
long nFingerliD,
long SampleNum);

Description:

The data size of finger-by-finger template of converted FIR is obtained.
nFingerID and SampleNum can be obtained using FingerID 3 SampleNumber property.
It is used only after the Export method is called.

Parameters:
nfingeriD:
The ID of a finger to be obtained.

nSampleNumber:
The number of a sample to be obtained. The value of either 0 or 1 is used.

Related methods:
Export

Related properties:
FingerID, SampleNumber, FPSampleData

H FIR
Prototype:
[ReadOnly] VARIANT FIR;

Page 299 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

FIR data acquired after calling a method such as Import or CreateTemplate are obtained as
binary stream data.

The length of data is stored at the FIRLength property.

FIR format to obtain is required to be designated in advance at the FIRFormat property.

Related methods:
Import, CreateTemplate

Related properties:
FIRLength, FIRFormat

H FIRLength
Prototype:
[ReadOnly] long FIRLength;

Description:
The length of binary stream data acquired after calling a method such as Import or
CreateTemplate is obtained.

Related methods:
Import, CreateTemplate

Related properties:
FIR

B TextFIR
Prototype:
[ReadOnly] BSTR TextFIR;

Description:

FIR data acquired after calling a method such as Import or CreateTemplate are obtained as
text string type. Since it is character string, the length is not separately stored.

FIR format to obtain is required to be designated in advance at the FIRFormat property.

Related methods:
Import, CreateTemplate

Page 300 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Related properties:
FIRFormat

B FIRFormat
Prototype:
[Read/Write] long FIRFormat;

Description:
The data format of FIR to obtain is designated. When the structure of FIR data is changed
later, this format value is changed to maintain the lower compatibility. Only the

STANDARD(1) is currently supported.

Related properties:
FIR, TextFIR

Page 301 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.6. IFPImage Interface

The interface related to a function to obtain fingerprint data as image or save them as image file.
To convert fingerprint data into image, this interface is obtained and used.

6.6.1. Methods
Various methods of the IFPImage interface are described.

W Export
Prototype:
HRESULT Export ();

Description:

Image data are extracted from Audit FIR data acquired most recently. After calling the
method, each of image informations can be obtained using various properties.

Since FIR data generally hide internal data through encryption, finger-by-finger image
information can not be known. Therefore, to store image finger-by-finger, data need to be
converted using this method before use.

Related properties:
ErrorCode, ErrorDescription
TotalFingerCount, SampleNumber, FingerID, RawData, ImageWidth, ImageHeight

Related methods:
IDevice.Capture, [Extraction.Enroll, IExtraction.Verify

B ExportEx
Prototype:
HRESULT ExportEx (VARIANT capturedAuditFIR);

Description:

Image data are extracted from given Audit FIR data. After calling the method, each of
image informations can be obtained using various properties.

FIR data generally hide internal data through encryption, finger-by-finger information can
not be known. Therefore, to store image finger-by-finger, data need to be converted using
this method before use.

It is equivalent to the Export method. A difference is that the Export method automatically
uses Audit FIR data acquired most recently but this method uses given Audit FIR data.

Parameters:
capturedAuditFIR:

Page 302 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Audit FIR data to convert. They can be either Audit FIR data in binary stream type or
TextAuditData data in text string type. Either one of them can be used without making a
difference.

Related properties:

ErrorCode, ErrorDescription

TotalFingerCount, SampleNumber, FingerID, RawData, ImageWidth, ImageHeight, AuditData,
AuditDatalength, TextAuditData

W Save
Prototype:
HRESULT Save (
BSTR bszImgFilePath,
long nlmageType,
long nFingerliD,
[in,optional] long nSampleNumber);

Description:

Exported image data for Audit are saved as file in desired type image format.

nFingerIlD and nSampleNumber can be obtained using FingerID and SampleNumber
property.

This method is used only after the Export or ExportEx method is called.

Parameters:
bszImgFilePath:
An image file to be saved is designated with full path.

nlmagelype:
The format of an image file to be saved is designated.
Allowed values for use are shown below.

1 - RAW
2 - BMP
3 - JPG
4 - WsQ
nfingeriD:

The ID of a finger to be saved.

nSampleNumber:

Page 303 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

The number of a sample to be saved. The value of either 0 or 1 is used.
If this value is not designated as option, the value of 0 is used.

Related properties:
ErrorCode, ErrorDescription
TotalFingerCount, SampleNumber, FingerID

Related methods:
Export, ExportEx

Page 304 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.6.2. Properties
Various properties of the IFPImage interface are described.

m ErrorCode
Prototype:
[ReadOnly] 1long ErrorCode;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored.

The value of 0 represents success and all other values represent failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values for ErrorCode as character string.

B TotalFingerCount
Prototype:
[ReadOnly] 1long TotalFingerCount;

Description:
The total number of fingers of converted Audit FIR is stored.
It is used only after the Export or ExportEx method is called.

Related methods:
Export, ExportEx

Related properties:
FingerID

W FingerID
Prototype:
[ReadOnly] long FingerID(long nindex);

Page 305 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

The finger ID information of converted FIR data is stored as array.
nindex can have a value ranging in 0 ~ (TotalFingerCount — 1).

It is used only after the Export or ExportEx method is called.

Related methods:
Export, ExportEx, Save

Related properties:
RawData

B SampleNumber
Prototype:
[ReadOnly] 1long SampleNumber ;

Description:

The number of finger-by-finger templates of converted Audit FIR is stored. The value of
either 1 or 2 is stored.

It is used only after the Export or ExportEx method is called.

Related methods:
Export, ExportEx, Save

Related properties:
RawData

B ImageWidth / ImageHeight

Prototype:

[ReadOnly] 1long ImageWidth;
[ReadOnly] long ImageHeight;
Description:

The image size of converted Audit FIR is stored.
It is used only after the Export or ExportEx method is called.

Related methods:
Export, ExportEx

Page 306 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Related properties:

RawData
B RawData
Prototype:
[ReadOnly] VARIANT RawData (
long nFingerliD,
[in, optional] long nSampleNumber);
Description:

Raw image data of converted Audit FIR are obtained as binary stream.
nFingerID and nSampleNumber can be obtained using FingerID and SampleNumber

property.
It is used after the Export or ExportEx method is called.

Related methods:
Export, ExportEx

Related properties:
FingerID, SampleNumber

B AuditData
Prototype:
[ReadOnly] VARIANT AuditData

Description:

Audit FIR data acquired most recently are obtained as binary stream.

Data obtained this way can be used as an argument of the ExportEx method.

To obtain this data, methods such as IDevice.Capture, IExtraction.Enroll, IExtraction.Verify
need to be implemented.

The length of binary stream is stored at the AuditDatalLength property.

Related methods:
IDevice.Capture, IExtraction.Enroll, IExtraction.Verify, ExportEx

Related properties:
AuditDatalength

Page 307 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B AuditDatalength
Prototype:
[ReadOnly] Ilong AuditDatalength

Description:

The length for binary stream of most recently acquired Audit FIR data is obtained.

To obtain this data, methods such as IDevice.Capture, IExtraction.Enroll, IExtraction.Verify
need to be implemented.

Related methods:
IDevice.Capture, IExtraction.Enroll, IExtraction.Verify, ExportEx

Related properties:
AuditData

B TextAuditData
Prototype:
[ReadOnly] BSTR TextAuditData

Description:

More recently acquired Audit FIR data are obtained as character string in text string type.
Data obtained this way can be used as an argument of the ExportEx method.

To obtain this data, methods such as IDevice.Capture, IExtraction.Enroll, IExtraction.Verify
need to be implemented.

Related methods:
IDevice.Capture, IExtraction.Enroll, IExtraction.Verify, ExportEx

Page 308 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.7. IFastSearch Interface

The interface related to FastSearch function to perform 1:N high-speed authentication. To use
functions such as FastSearch related DB management and authentication implementation, this
interface is obtained and used.

6.7.1. Methods
Various methods of the IFastSearch interface are described.

m AddFIR
Prototype:
HRESULT AddFIR (VARIANT FIR, long nUserlD);

Description:

FIR data are added to the DB for FastSearch.

To implement 1:N authentication, the DB to implement 1:N needs to be built and the DB is
created using this function.

Also, 1:N authentication operates in template unit rather than FIR unit. Therefore, even if
one FIR is added, several data are added to the DB when several numbers of templates
exists inside FIR. Information on added templates can be obtained through a property
such as AddedFplInfo.

Parameters:

FIR

FIR data to be added. They can be either FIR data in binary stream type or TextFIR data in
text string type. Either one of them can be used without making a difference.

nUserlD:
The user ID of FIR to be added.

Related properties:
ErrorCode, ErrorDescription
FpCount, IsFpExisted, AddedFpCount, AddedFpInfo, FpInfo

Related methods:
RemoveFp, RemoveUser, ClearDB, SaveDBToFile, LoadDBFromFile

B RemoveFp
Prototype:
HRESULT RemoveFp (long nUserlID, long nFingerlID, long nSampleNumber);

Page 309 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:
Specific data are deleted from the DB for FastSearch.

Parameters:
nUserlD:
The user ID information of a template to be deleted.

nfingerlD:
The finger ID information of a template to be deleted.

nSampleNumber:
The sample number of a template to be deleted.

Related properties:
ErrorCode, ErrorDescription
FpCount, IsFpExisted, FpInfo

Related methods:
AddFIR, RemoveUser, ClearDB, SaveDBToFile, LoadDBFromFile

B RemoveUser
Prototype:
HRESULT RemoveUser (long nUserliD);

Description:

All data for a specific user ID are deleted from the DB for FastSearch.

It is similar to the UCBioAPI_RemoveFpFromFastSearchDB function. There is a difference in
that all data are deleted when several numbers of template data for the same user ID are
stored at the DB.

Parameters:
nUserlD:
The user ID information of a template to be deleted.

Related properties:
ErrorCode, ErrorDescription

FpCount, IsFpExisted, FpInfo

Related methods:

Page 310 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

AddFIR, RemoveFp, ClearDB, SaveDBToFile, LoadDBFromFile

m ClearDB
Prototype:
HRESULT ClearDB ();

Description:
The memory of the DB for FastSearch is released.

Related properties:
ErrorCode, ErrorDescription
FpCount, IsFpExisted, FpInfo

Related methods:
AddFIR, RemoveFp, RemoveUser, SaveDBToFile, LoadDBFromFile

B SaveDBToFile
Prototype:
HRESULT SaveDBToFile(BSTR bszFilePath);

Description:
The DB for FastSearch is saved as file. If the memory DB is saved as file like this, loading is
faster using the LoadDBFromFile method in the next use of the DB.

Parameters:
bszFilePath.
The full path of file name to be saved as file.

Related properties:
ErrorCode, ErrorDescription
FpCount, IsFpExisted, FpInfo

Related methods:
AddFIR, RemoveFp, RemoveUser, ClearDB, LoadDBFromFile

B LoadDBFromFile
Prototype:
HRESULT LoadDBFromFile(BSTR bszFilePath);

Page 311 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:
The DB for FastSearch is loaded to the memory from the file.
Only files saved using the SaveDBToFile method can be loaded this way.

Parameters:
bszFilePath:
The full path of file name to be loaded to the DB.

Related properties:
ErrorCode, ErrorDescription
FpCount, IsFpExisted, FpInfo

Related methods:
AddFIR, RemoveFp, RemoveUser, ClearDB, SaveDBToFile

m IdentifyUser
Prototype:
HRESULT ldentifyUser(VARIANT processedFIR, long nSeculLevel);

Description:

1:N authentication with specific FIR is attempted at the DB for FastSearch.

If authentication succeeds after calling the function, authenticated template information
can be obtained. Authentication time may vary each time due to the nature of 1L:N
authentication and the system speed and memory may affect it. Since authentication time
may last long, the MaxSearchTime property is used to set the maximum authentication
time.

Parameters:

processedFIR:

FIR data to authenticate. They can be either FIR data in binary stream type or TextFIR data
in text string type. Either one of them can be used without making a difference.

nSeculevel:
A security level to use during authentication is designated.
For allowed values, refer to the UCBioAPI_FIR_SECURITY_LEVEL definition.

Related properties:
ErrorCode, ErrorDescription
MatchedFpInfo, MaxSearchTime, UseGroupMatch, MatchMethod

Page 312 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.7.2. Properties
Various properties of the IFastSearch interface are described.

m ErrorCode
Prototype:
[ReadOnly] 1long ErrorCode;

Description:
Values for errors occurred during the setting of executed methods and properties are

stored.
The value of 0 represents success and all other values represent failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values for ErrorCode as character string.

N FpCount
Prototype:
[ReadOnly] 1long FpCount;

Description:
The number of templates stored at the current FastSearch DB is stored.

Related methods:
AddFIR, RemoveFp, RemoveUser, ClearDB, SaveDBToFile, LoadDBFromFile

m FpInfo
Prototype:
[ReadOnly] VARIANT FpInfo(long index);

Description:
Template information stored at the current FastSearch DB is obtained.
This obtained information is obtained with the ITemplatelnfo interface.

Page 313 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

The index has a value ranging in 0 ~ (FpCount — 1).

Related properties:
ITemplatelnfo.UserlD, ITemplatelnfo.FingerID, ITemplatelnfo.SampleNumber

W IsFpExisted
Prototype:
[ReadOnly] BOOL IsFpExisted(
long nUserlD,
long nFingerliD,
long nSampleNumber);
Description:
It examines if a template with the information designated at the current FastSearch DB
exists.
Parameters:
nUserlD:

The user ID information of a template to be deleted.

nfingeriD:
The finger ID information of a template to be deleted.

nSampleNumber:
The sample number of a template to be deleted.

Related methods:
AddFIR, RemoveFp, RemoveUser, ClearDB, SaveDBToFile, LoadDBFromFile

B AddedFpCount
Prototype:
[ReadOnly] BOOL AddedFpCount;

Description:

When FIR data are added to the FastSearch DB through the AddFIR method, the number
of added templates is obtained.

1:N authentication operates internally in template unit rather than in FIR unit. Therefore,
even if one FIR is added, several numbers of data are added to the DB when several
numbers of templates exist inside FIR. The number of templates added in that way is

Page 314 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

stored in this property.
It is used only after the AddFIR is called.

Related methods:
AddFIR

B AddedFplInfo
Prototype:
[ReadOnly] VARIANT AddedFpInfo(long index);

Description:

When FIR data are added to the FastSearch DB through the AddFIR method, each of
added template informations is obtained. The obtained information is obtained with the
[Templatelnfo interface.

The index can have a value ranging in 0 ~ (AddedFpCount - 1).

It is used only after the AddFIR method is called.

Related methods:
AddFIR

Related properties:
ITemplatelnfo.UserlD, ITemplatelnfo.FingerID, ITemplatelnfo.SampleNumber

B MatchedFplnfo
Prototype:
[ReadOnly] VARIANT MatchedFplInfo;

Description:

When 1:N authentication succeeds through the IdentifyUser method, authenticated
template information is obtained.

The obtained information is obtained with the ITemplatelnfo interface.

It is used only after the IdentifyUser method is called.

Related methods:
IdentifyUser

Related properties:
ITemplatelnfo.UserlD, ITemplatelnfo.FingerID, ITemplatelnfo.SampleNumber

Page 315 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B MaxSearchTime
Prototype:
[Read/Write] long MaxSearchTime;

Description:

When 1:N authentication is performed through the IdentifyUser method, authentication
speed varies depending on the DB size and system performance. To prevent delaying of
authentication due to slow authentication, the maximum authentication time can be
designated and authentication is performed only within that time period. If authentication
is not completed within the designated time, IdentifyUser returns an error.

Since the unit for this value is millisecond, 10,000 is set for 10 seconds.

If this value is O, it is equivalent to not designating the maximum authentication time. The
default value is 0.

Related methods:
IdentifyUser

B UseGroupMatch
Prototype:
[Read/Write] long UseGroupMatch;

Description:

When performing 1:N authentication through the IdentifyUser method, it determines if
authentication in group unit is performed or not. If it is set as 0, authentication is
performed in the order stored at the DB. If is set as 1, authentication in group is
performed. The default value is 1.

It is recommended to set this value as 1 for authentication.

Related methods:
IdentifyUser

B MatchMethod
Prototype:
[Read/Write] long MatchMethod;

Description:
When performing 1:N authentication through the IdentifyUser method, a method to
perform authentication is determined. If it is set as 0, an authentication level is set and

Page 316 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

authentication is terminated immediately when it goes over that level. If it is set as 1, it is
the highest point authentication method and it searches for the value with the highest
authentication level. The default value is 0.

It is recommended to set this value as O for authentication.

Related methods:
IdentifyUser

Page 317 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.8. ITemplatelnfo Interface

This interface is used to represent template information in the IFastSearch interface. It consists of
only properties without including any method.

6.8.1. Properties

Various properties of the ITemplatelnfo interface are described.

W UserID
Prototype:
[ReadOnly] Ilong UserliD;

Description:

It has the user ID from the template information of FastSearch.

W FingerID
Prototype:
[ReadOnly] long FingerlD;

Description:

It has the finger ID from the template information of FastSearch. Refer to
UCBioAPI_FINGER_ID.

B SampleNumber
Prototype:

[ReadOnly] Ilong SampleNumber ;

Description:

It has the sample number from the template information of FastSearch. It has the value of
either 0 or 1.

Page 318 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.9. ISmartCard Interface

The interface related to the smart card. To use functions such as storing data to the smart card and
loading data, this interface is obtained and used.

® Note - Functions for smart card use may not include some methods not supported
depending on the firmware version of devices.

6.9.1. Methods
Various methods of the ISmartCard are described.

B RFPowerOn
Prototype:
HRESULT RFPowerOn ();

Description:
The RF power in the RF range is switched in within 5 seconds.
Most smart card APIs operate with the RF power on.

Related properties:
ErrorCode, ErrorDescription
LED

Related methods:
IDevice.Open, RFPowerOff

Page 319 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

®m RFPowerOff
Prototype:
HRESULT RFPowerOff ();

Description:
The RF power in the RF range is switched off within 5 seconds.

Related properties:
ErrorCode, ErrorDescription
LED

Related methods:
RFPowerOn

Page 320 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B RFFunction
Prototype:
HRESULT RFFunction(VARIANT CmdBuff, long nCmdLen);

Description:

If a card exits in the RF range, a command is transmitted and the result is returned within
5 seconds.

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

Parameters:
CmdBuff:
The buffer pointer that stores commands to transmit.

nCmdLen.
The length of the buffer pointer that stores commands to transmit.

Related properties:
ErrorCode, ErrorDescription
LED

Related methods:
RFPowerOn

Page 321 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W ReadSerial
Prototype:
HRESULT ReadSerial ();

Description:

If a card exists in the RF range, the applicable serial number is obtained within 5 seconds.
Since this command includes a function to switch the RF power on, it is not necessary to
call the RFPowerOn method before the function call.

After calling the function, the serial number can be obtained through ResultBuffer or Serial

property.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength, Serial

Page 322 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B ReadBlock
Prototype:
HRESULT ReadBlock (long SectorNum, long BlockNum);

Description:

If a card exists in the RF range, data in the designated block are obtained within 5 seconds.
The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

After calling the function, the value can be obtained through ResultBuffer.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to read. The maximum value may vary depending on the memory
size of the card.

BlockNum.
The number of a block to read. It has a value ranging in 0 ~ 3.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength

Related methods:
RFPowerOn, WriteBlock

Page 323 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

W WriteBlock
Prototype:
HRESULT WriteBlock (long SectorNum, long BlockNum, VARIANT varData);

Description:

If a card exists in the RF range, 16 byte length data are written on the designated block
within 5 seconds.

The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to be written on. The maximum value may vary depending on the
memory size of the card.

BlockNum:
The number of a block to be written on. It has a value ranging in 0 ~ 3.

varData:
16 byte block data to be written on.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB

Related methods:
RFPowerOn, ReadBlock

Page 324 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B ReadSector
Prototype:
HRESULT ReadSector (long SectorNum);

Description:

If a card exists in the RF range, data in the designated sector are loaded within 5 seconds.
The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

After calling the function, the value can be obtained through ResultBuffer.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to read. The maximum value may vary depending on the memory
size of the card.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength

Related methods:
RFPowerOn, WriteSector

Page 325 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B WriteSector
Prototype:
HRESULT WriteSector (long SectorNum, VARIANT varData48);

Description:

If a card exists in the RF range, 48 byte length data are written on the designated sector
within 5 seconds.

The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to be written on. The maximum value may vary depending on the
memory size of the card.

varData:
48 byte sector data to be written on.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB

Related methods:
RFPowerOn, ReadSector

Page 326 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B ReadSectorFieldContent
Prototype:
HRESULT ReadSectorFieldContent (
long StartSectorNum,
long EndSectorNum);

Description:

If a card exists in the RF range, all data in the designated sector range are loaded within 5
seconds.

The maximum range allowed for designation is 10 sectors and the maximum length of
data that can be obtained is 480 bytes. (48 Bytes * 10 Sectors = 480 Bytes)

The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

After calling the function, the value can be obtained through ResultBuffer.

This function is a Mifare card related method.

Parameters:

StartSectorNum:

The starting number of sectors to read. The maximum value may vary depending on the
memory size of the card.

EndSectorNum:
The ending number of sectors to read. The maximum value may vary depending on the
memory size of the card.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength

Related methods:
RFPowerOn, WriteSectorFieldContent

Page 327 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B WriteSectorFieldContent
Prototype:
HRESULT WriteSectorFieldContent (
long StartSectorNum,
long EndSectorNum,
VARIANT varData);

Description:

If a card exists in the RF range, all data inside the designated sector range are written on
within 5 seconds.

The maximum range allowed for designation is 10 sectors and the maximum length of
data that can be written on is 480 bytes. (48 Bytes * 10 Sectors = 480 Bytes)

The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

This function is a Mifare card related method.

Parameters:

StartSectorNum:

The starting number of sectors to be written on. The maximum value may vary depending
on the memory size of the card.

EndSectorNum:
The ending number of sectors to be written on. The maximum value may vary depending
on the memory size of the card.

varData:
Data to write. The length of data is (EndSectorNum — StartSectorNum + 1) * 48bytes.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB

Related methods:
RFPowerOn, ReadSectorFieldContent

Page 328 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

M PreValue
Prototype:
HRESULT PreValue (long SectorNum, long BlockNum, long newval);

Description:

5

If a card exists in the RF range, the designated block is switched to the Value mode and 4
byte newVal is written within 5 seconds.

If the pData value to write is 0x00000000, the following value is written on the applicable
block after the function call. (0x00000000FFFFFFFFOO0O00000FFFFFFFFOOFFOOFF)

The block switched to the Value mode this way can use methods for the Value mode such
as ReadValue and IncrementValue.

For more detailed information on the Value mode, refer to Using Smart Card in this
document.

The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to be written on. The maximum value may vary depending on the
memory size of the card.

BlockNum:
The number of a block to be written on. It has a value ranging in 0 ~ 3.

newlal:
4 byte data to write.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, Value

Related methods:
RFPowerOn, ReadValue, IncrementValue, DecrementValue

Page 329 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B ReadValue
Prototype:
HRESULT ReadValue(long SectorNum, long BlockNum);

Description:

If a card exists in the RF range, 4 byte Value data in the designated block are loaded
within 5 seconds.

The RF power must be switched on.

The AuthMode and Key value appropriate for access rights must be set in advance.

After calling the function, the value can be obtained through the ResultBuffer or Value
property.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to read. The maximum value may vary depending on the memory
size of the card.

BlockNum.
The number of a block to read. It has a value ranging in 0 ~ 3.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength, Value

Related methods:
RFPowerOn, PreValue, IncrementValue, DecrementValue

Page 330 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B IncrementValue
Prototype:
HRESULT IncrementValue(long SectorNum, long BlockNum, long newval);

Description:

If a card exists in the RF range, 4 byte Value data in the designated block is increased by a
designated value within 5 seconds.

The RF power must be switched on and the designated block must be in the Value mode.
The AuthMode and Key value appropriate for access rights must be set in advance.

After calling the function, the value can be obtained through the ResultBuffer or Value
property.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to be written on. The maximum value may vary depending on the
memory size of the card.

BlockNum:
The number of a block to be written on. It has a value ranging in 0 ~ 3.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength, Value

Related methods:
RFPowerOn, PreValue, ReadValue, DecrementValue

Page 331 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B DecrementValue
Prototype:
HRESULT DecrementValue(long SectorNum, long BlockNum, long newval);

Description:

If a card exists in the RF range, 4 byte Value data in the designated block is decreased by
a designated value within 5 seconds.

The RF power must be switched on and the designated block must be in the Value mode.
The AuthMode and Key value appropriate for access rights must be set in advance.

After calling the function, the value can be obtained through the ResultBuffer or Value
property.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to be written on. The maximum value may vary depending on the
memory size of the card.

BlockNum:
The number of a block to be written on. It has a value ranging in 0 ~ 3.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength, Value

Related methods:
RFPowerOn, PreValue, ReadValue, IncrementValue

Page 332 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B WriteSectorTrailer
Prototype:
HRESULT WriteSectorTrailer (
long SectorNum,
VARIANT NewAccessBit,
VARIANT NewKeyA,
VARIANT NewKeyB);

Description:

If a card exists in the RF range, the sector trailer area of the designated is modified within
5 seconds.

Key A, access bits and Key B value of the applicable sector are stored at the sector trailer.
The status of success/failure is determined according to access rights of the applicable
sector.

The AuthMode and Key value appropriate for access rights must be set in advance.

This function is a Mifare card related method.

Parameters:

SectorNum:

The number of a sector to be written on. The maximum value may vary depending on the
memory size of the card.

NewAccessBit:
4 byte length data that stores new access bits.

NewKeyA:
6 byte length data that stores new key A.

NewKeyB:
6 byte length data that stores new key B.

Related properties:
ErrorCode, ErrorDescription
LED, AuthMode, KeyA, KeyB, ResultBuffer, ResultLength, Value

Related methods:
RFPowerOn, PreValue, ReadValue, IncrementValue

Page 333 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

H RegA
Prototype:
HRESULT ReqAQ);

Description:

If a type A card exists in the RF range, ATQ is obtained from the card within 5 seconds.
After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn, HaltA

® WupA
Prototype:
HRESULT WupAQ);

Description:

If a type A card exists in the RF range, ATQ is obtained from the card within 5 seconds.

It is equivalent to the RegA method but there is a difference in that a card in halt state
also responds.

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn, HaltA

W Select
Prototype:
HRESULT Select();

Page 334 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

With ATQ obtained from the type A card, if a type A card exists in the RF range, the SAK
and UID value of the card are obtained from the card within 5 seconds.

The length of SAK is 1 byte and the length of UID is variable.

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to ISO14443-A.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn

m HaltA
Prototype:
UCBioAPI_RETURN UCBioAPI UCBioAPI_SC_Halt (
[IN] UCBioAPI_HANDLE hHandle,
[IN] UCBioAPI_UINT16 wLed) ;

Description:

The type A card in select state is switched to halt state.

The card that became halt state this way does not respond to the RegA method but
responds only to the WupA method.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn, RegA, WupA

Page 335 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

M Rats
Prototype:
HRESULT Rats(long fsdi, long cid);

Description:

If a type A card exists in the RF range, the ATS (Answer To Select) value of the card is
obtained from the card within 5 seconds. ATS can be obtained when the SAK value is 0x2X
(ISO14443-4 supported).

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Parameters:

Fsdi:

The maximum size of the frame that PCS can receive through the setting of FSDI (Frame
Size for proximity coupling Device Integer) can be determined. (Values ranging in 0x00 ~
OxOF)

ca:
It is possible to call each individual card selectively through CID (Card Identifier). (Values
ranging in 0x00 ~ OxOF)

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn

Page 336 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B PpsRequest
Prototype:
HRESULT PpsRequest(long cid, long ppsO, long ppsl);

Description:

If a type A card exists in the RF range, the PPSS value of the card is obtained from the
card within 5 seconds.

If parameters that can be changed by the ATS value are supported, it can be used by PCD.
That is, if a higher Baud rate is supported at DS and DR, selective parameters in ATS, the
Baud rate in both directions can be independently increased by 2, 4, 8 times.

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to 1ISO14443-A.

Parameters:
cid:
The CID (Card Identifier) value selected during Rats call. (Values ranging in 0x00 ~ OxOF)

ppsO:
It represents if PPS1 is transmitted or not.

It represents transmission if it is Ox11. It represents no transmission if it is Ox01.

ppsl:
The upper 2 bytes represent DRI and the lower 2 bytes represent DS.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn

Page 337 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B BlockFormat

Prototype:
HRESULT BlockFormat(
long pcb,
long CidOrNad,
VARIANT inf,
long inflLen);
Description:

If a type A card exists in the RF range, data are loaded from the card within 5 seconds.
The command on block exchange in the data layer (T=1).

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to [SO14443-A.

Parameters:

pch.

It represents PCB (Protocol Control Byte). (Required)

It has information required to control data transmission. It is divided into I — Block, R -
Block, S — Block. To read data, I — Block is generally used. The PCB value needs to be
transmitted by toggling BitO as in 0x0A, 0x0B, Ox0A.

CidOrNad:
The CID or NAD value designated at PICC with Rats. (Optional)

inf:
It represents INF (Information Field).
To read the applicable file, a special format needs to be known.

infLen:
The length of inf.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn, Deselect

Page 338 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

M Deselect
Prototype:
HRESULT Deselect(long CidOrNad);

Description:

If a type A card in active state exists in the RF range, the card is deactivated within 5
seconds.

If a card in active state is deselected, the card does not respond to BlockFormat as long as
it is within the RF range.

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to [SO14443-A.

Parameters:
CidOrNad:
CID or NAD value designated at PICC with Rats.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn, BlockFormat

Page 339 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

B TypeA_ActiveState
Prototype:
HRESULT TypeA_ ActiveState();

Description:

If a type A card exists in the RF range, ATS is obtained from the card by implementing
RegA, Select and Rats at the same time within 5 seconds.

After calling the function, the value can be obtained through ResultBuffer.

The RF power must be switched on.

This function is a function related to [SO14443-A.

Related properties:
ErrorCode, ErrorDescription
LED, ResultBuffer, ResultLength

Related methods:
RFPowerOn, RegA, Select, Rats

Page 340 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

6.9.2. Properties
Various properties of the ISmartCard interface are described.

W ErrorCode
Prototype:
[ReadOnly] 1long ErrorCode;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored.

The value of 0 represents success and all other values represent failure.

B ErrorDescription
Prototype:
[ReadOnly] BSTR ErrorDescription;

Description:

Values for errors occurred during the setting of executed methods and properties are
stored as character string.

It is used to output error values for ErrorCode as character string.

EmLED
Prototype:
[Read/Write] long LED;

Description:

It designates if the result of success/failure is displayed on the LED of a device or not.

If 1 is set, the LED of a device changes to blue upon success. It changes to red upon
failure. If O is set, there is no change on the LED.

The default value is 1.

Related methods:

RFFunction, ReadSerial, ReadBlock, WriteBlock, ReadSector, WriteSector,
ReadSectorFieldContent, WriteSectorFieldContent, PreValue, ReadValue, IncrementValue,
DecrementValue, WriteSectorTrailer, RegA, WupA, HaltA, Select, Rats, PpsRequest,
BlockFormat, Deselect, TypeA_ActiveState

m AuthMode

Page 341 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Prototype:
[Read/Write] long AuthMode;

Description:

At a Mifare card related method, it designates which key from key A and key B is used in
authentication. To use key A, this value is set as 0x60. To use key B, this value is set as
0x61. The default value is 0x60.

Related methods:

ReadSerial, ReadBlock, WriteBlock, ReadSector, WriteSector, ReadSectorFieldContent,
WriteSectorFieldContent, PreValue, ReadValue, IncrementValue, DecrementValue,
WriteSectorTrailer

Related properties:
KeyA, KeyB

H KeyA / KeyB

Prototype:

[Read/Write] VARIANT KeyA;

[Read/Write] VARIANT KeyB;

Description:

At a Mifare card related method, the value of either key A or key B to be used is
designated.

Either key A or key B is used according to AuthMode.
The key value is a binary array with 6 byte value. The value of “FF FF FF FF FF FF" is stored
as the default value.

Related methods:

ReadSerial, ReadBlock, WriteBlock, ReadSector, WriteSector, ReadSectorFieldContent,
WriteSectorFieldContent, PreValue, ReadValue, IncrementValue, DecrementValue,
WriteSectorTrailer

Related properties:
AuthMode

B ResultBuffer
Prototype:
[ReadOnly] VARIANT ResultBuffer;

Page 342 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Description:

After calling a method from smart card methods to read a value, it is the buffer array that
stores the result value. It is used only after the method is called. The length of the buffer is
stored at the ResultLength property.

Related methods:
ReadSerial, ReadBlock, ReadSector, ReadSectorFieldContent, PreValue, ReadValue,
IncrementValue, DecrementValue

Related properties:
ResultLength

W ResultLength
Prototype:
[ReadOnly] long ResultlLength;

Description:
After calling a method from smart card methods to read the value, the length of the
buffer array that stores the result value is stored. It is used only after the method is called.

Related methods:
ReadSerial, ReadBlock, ReadSector, ReadSectorFieldContent, PreValue, ReadValue,
IncrementValue, DecrementValue

Related properties:
ResultBuffer

M Value
Prototype:
[ReadOnly] long Value;

Description:

When reading the Value using a method for Value mode from Mifare card related methods,
the value can be obtained through ResultBuffer but the same value can also be obtained
through the Value property.

Related methods:
PreValue, ReadValue, IncrementValue, DecrementValue

Page 343 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Related properties:
ResultBuffer

W Serial
Prototype:
[ReadOnly] long Serial;

Description:

When reading the serial number using the ReadSerial method from Mifare card related
methods, the serial number can be obtained through ResultBuffer but the same number
can also be obtained through the Serial property.

Related methods:
ReadSerial

Related properties:
ResultBuffer

Page 344 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

7.Distribution Guide

When an application product is developed using UCBioBSP SDK, SDK modules to be included in
product distribution are described.

7.1. Common Items
Products developed using UCBioBSP SDK basically require the following modules.

W Device driver
Description:
To use SDK, a device driver appropriate for each device must be installed. But, since a device
is not required when only authentication is performed from the server, installation is not
necessary.

W UCDevice.dll
Installation folder:
Windows System32 folder (System folder for Win9x)
Description:
To use a device as a device control module of UCBioBSP SDK, this must be installed.

m UCBioBSP.dII
Installation folder:
Windows System32 folder (System folder for Win9x)
Description:
This must be installed as a core module of UCBioBSP SDK.

m Skin file
Installation folder:
Windows System32 folder (System folder for Win9x)
Description:
Required language-by-language skin files are installed if necessary.

7.2. Development Using DLL

When developed using only UCBioBSPdlIl, only common items are installed.

Page 345 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

7.3. Development Using COM

When developed using UCBioBSPCOM.dIl, a COM module, the following files as well as common
items are distributed.

®m UCBioBSPCOM.dII
Installation folder: Windows System32 folder (System folder for Win9x)
Module registration: Use is allowed only when the COM module is registered at the Windows
registry.
Registration is possible through a command “regsvr32
UCBioBSPCOM.AII" or automatic registration is possible using self
registration option in the install program.

7.4. Development Using .NET
When developed using UNIONCOMM.SDK.UCBioBSPdlIl, a class library for .NET, the following files
as well as common items are distributed.

® .NET Framework v2.0 or higher
.NET Framework v2.0 or higher must be installed.

B UNIONCOMM.SDK.UCBioBSP.dII
Installation folder: GAC (Global Assembly Cache) folder
Module registration: Installation is possible using the installation file for .NET included in SDK.

7.5. Development over BioAPI Framework
When developed over the BioAPI Framework, the following files as well as common items are
distributed.

B BioAPI Framework v2.0 or higher
BioAPI Framework v2.0 or higher must be installed.

B UCBioBSP.dIl distribution and registration
Module registration: UCBioBSPdIl must be registered at the Framework using the BSP
registration program provided by the BioAPI Framework before use.

Page 346 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

Appendix A. How to enroll fingerprint properly

Proper procedures to register a fingerprint to the fingerprint recognition device are described.

Once a fingerprint is registered, it is likely to be used in authentication repeatedly and authentication
rate may be reduced significantly by wrongly entered fingerprint data. Therefore, to register a good-
quality fingerprint, it is highly recommended to read this appendix carefully.

When distributing a product developed with SDK, this appendix may as well be included in the
product to be used as a fingerprint input guide for users.

A.1l. Proper Way to Enter Fingerprint

1) Place a finger so that the center of fingerprint is located in the right center of the
fingerprint input window.

® Do not press too heard with the finger during input and exert pressure for the finger to
barely touch the input window.
® Do not move the finger while the red light is on. Remove the finger after the red light

goes off.
® Place the finger in the right direction against the fingerprint input window as shown in

the figure.

Page 347 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

2) Enter the fingerprint of the index finger if possible.

® Using the index finger if possible, enter the fingerprint as if you are making thumbprint

® Using the index finger enables accurate and stable fingerprint input.

3) Check if the fingerprint is not clear or it is injured.

® [t is difficult to recognize too dry or wet fingerprint, unclear fingerprint and injured

fingerprint. Register with the fingerprint in a different finger in such a case.

@_

O O O

A.2. Improper Fingerprint Input Method

1) When a fingerprint is placed sideways,
® If a fingerprint is placed sideways, the possibility of failure rises.

2) When a fingerprint does not touch the input window well,
® If a fingerprint is detached from the input window, authentication will fail.

3) When the tip of a fingerprint is placed on the input window,
® If the tip of a fingerprint is placed on the input window, authentication will fail.

4) When a fingerprint is turned,
® \When a fingerprint is turned or moved, authentication rate will drop.

5) When a fingerprint is placed in the edge of the input window,
® If a fingerprint is placed in the edge of the input window, authentication will fail.
A.3. Procedures to Handle Authentication Failure

1) When a finger is too wet,
® If a finger is too wet, authentication is likely to fail. Enter a fingerprint after drying it.

Page 348 of 350

UNION COMMUNITY Co., Ltd. UCBioBSP SDK Programmer’s Guide

2) When a finger is too dry (especially in winter),
® Enter a fingerprint after applying adequate moisture (breadth) on the finger.

3) When a finger is injured,
® [t is recommended to use a different finger for registration.

4) When foreign substances are on the input window or finger,
® Enter a fingerprint after cleaning the input window or finger well.
A.4. Fingerprint Registration, More Convenient with This Way
1) Register a finger with clear and good fingerprint.

2) Since a child fingerprint may be too small or weak for use, it is necessary to register a
new fingerprint every 6 months.

3) If authentication rate is too low or fingerprint is too weak, registering the same finger
in multiple times (2~3) enables convenient use.

4) Using the index finger if possible, enter a fingerprint as if you are making thumbprint.
Touching the tip of a fingerprint is not a proper way of input. Let the center of a
fingerprint touch the fingerprint input window.

A.5. Considerations Depending on the Condition of User Fingerprint

1) It is difficult to recognize too dry or wet fingerprint, unclear fingerprint and injured
fingerprint. Register with a different finger in such a case.

2) Preventing a fingerprint from moving or shaking during fingerprint input enables
smooth process.

3) Registration may not be possible for seniors with too many fine wrinkles in the
fingerprint.

4) Using the index finger enables accurate and stable fingerprint input.

5) It is recommended to register with more than 3 fingerprints.

Page 349 of 350

UNION COMMUNITY Co., Ltd.

UCBioBSP SDK Programmer’s Guide

Page 350 of 350

